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ABSTRACT: This study applies the Ensemble Forecast Sensitivity to Observation Impact (EFSOI)

technique to two 80-member ensemble Kalman filter (EnKF) data assimilation (DA) systems over

the United States, differing only in cycling strategy: continuous cycling (CC) and partial cycling

(PC). EFSOI calculations were performed using 1-hour, 6-hour and 12-hour evaluation forecast

times, verified against the Rapid Refresh Model (RAP) analysis. Beneficial impact rates indicated

that most observations were beneficial for both DA systems and forecast times, with no significant

difference between PC and CC. Differences in cumulative observation impacts were statistically

significant only for sources with few observations and small impacts, like mesonet observations.

For numerous and impactful observations, such as rawinsondes and aircraft, differences were not

statistically significant, suggesting similar use of important observations by PC and CC. PC forecasts

were better than CC forecasts, but this improvement is not clearly due to better use of observations.

Variable-wise analysis showed similar behavior between PC and CC for impact rates and cumulative

impacts of U, V, T, RH, and surface zonal wind. Overall, there was no evidence that either PC

or CC systematically used observations better, with mixed results across observation types and

sources. Differences between PC and CC were typically small and not statistically significant for

the most impactful observations and variables. Fundamental methodological differences between

PC and CC did not significantly impact their ability to assimilate observations, the process of

ingesting global fields likely responsible for improved PC forecasts relative to CC.
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SIGNIFICANCE STATEMENT: This study compares two ensemble Kalman filter (EnKF) data

assimilation (DA) systems—continuous cycling (CC) and partial cycling (PC)—using the Ensemble

Forecast Sensitivity to Observation Impact (EFSOI) method. Analyzing 1-hour, 6-hour and 12-

hour forecasts, most observations were beneficial for both systems, with no significant difference

in beneficial impact rates. While PC forecasts were better than CC, this was not clearly due to

better observation usage. Significant differences in cumulative observation impacts were only

found for less impactful sources. Overall, both systems similarly utilized key observations, and

fundamental methodological differences between PC and CC did not significantly affect their

observation assimilation capabilities.

1. Introduction

Precise numerical weather prediction (NWP) model forecasts depend on accurate initial con-

ditions provided by data assimilation (DA) systems that combine observations and short-term

forecasts. Nowadays, DA systems assimilate a large number of observations from various plat-

forms such as rawinsondes, aircraft, and satellites, which is one of the main reasons forecasts have

improved steadily over the last few decades (Bauer et al. 2015). Understanding how observations

impact forecasts is critical to improving DA systems and the performance of subsequent forecasts

(Sommer and Weissmann 2014; Gustafsson et al. 2018; Hu et al. 2023). Many observation types

have a beneficial impact that improve analysis and forecast quality, while others may have detri-

mental impacts on analysis and forecast quality, pointing to necessary future developments about

how these observations are best used (or not used).

There are different methods to calculate the contribution of an individual observation to a

DA system, known as observation impact. One method is the ensemble forecast sensitivity to

observations impact (EFSOI, Kalnay et al. (2012)). This approach allows quantification of how

much each individual observation improved or degraded the forecast, when assimilated with any

ensemble Kalman filter (EnKF; Houtekamer and Zhang (2016)), based on the forecast error

behavior. The observation impact at the evaluation forecast time is obtained by the difference

between the errors in forecasts initialized from two subsequent DA cycles, compared with a

verifying truth, which can either be the analysis of the DA system or an independent field (i.e.,

analysis of another DA system, reanalysis, observations).

3
Accepted for publication in Weather and Forecasting. DOI 10.1175/WAF-D-24-0127.1.Unauthenticated | Downloaded 04/30/25 06:07 PM UTC



EFSOI has been efficiently used to quantify observation impact in both global DA systems (e.g.,

Ota et al. (2013); Yamazaki et al. (2021)) and regional DA systems (Kunii et al. 2012; Casaretto et al.

2023). The EFSOI method is also used to monitor the performance of operational DA systems,

and recent studies demonstrated that EFSOI information was useful for detecting and rejecting

detrimental observations, thereby improving forecasts (Hotta et al. 2017; Chen and Kalnay 2020;

Casaretto et al. 2023).

EFSOI can also be applied to investigate how differently constructed EnKFs utilize observations.

Specifically, within limited-area DA systems, there are two possible cycling strategies: continuous

cycling (CC) and partial cycling (PC). In a CC system, the short-term forecast initialized from the

previous analysis serves as the foundation for the current analysis cycle. External models primarily

contribute boundary conditions, resulting in a self-contained, limited-area DA system. In contrast,

a PC system periodically discards limited-area analysis cycles and replaces them with external

analyses generated by a global NWP model. In essence, a PC system periodically incorporates

global model information over the whole domain, while a CC system does not. Accordingly,

PC and CC DA systems produce different initial conditions and, consequently, diverse forecast

outcomes. For instance, Hsiao et al. (2012) demonstrated that compared to CC 3DVAR analyses,

PC 3DVAR analyses had substantially smaller biases and initialized notably improved forecasts

over Taiwan and its surrounding areas. Furthermore, numerous studies employing CC DA over the

conterminous United States (CONUS) and adjacent regions have documented bias accumulations

(e.g., Torn and Davis (2012); Romine et al. (2013); Cavallo et al. (2016); Poterjoy et al. (2021)).

Given their different cycling methodologies, the impacts of specific observation types may vary

considerably between PC and CC systems. Understanding how PC and CC DA systems utilize

observations is crucial, considering that both are used operationally. For example, the KENDA DA

system (Schraff et al. 2016) employs continuous cycling, whereas other systems like the operational

RAP (Benjamin et al. 2016) and HRRR (Dowell et al. 2022) over the CONUS use partial cycling.

Thus, to better understand how PC and CC DA systems use observations, this study employs EFSOI

to explore observation impact in both CC and PC 80-member, 15-km EnKFs over the CONUS that

were identical except for cycling strategy. Using EFSOI to compare both CC and PC DA systems

can provide unique insights as to how these different types of DA systems use observations.

Furthermore, providing objective guidance on the impact of specific observation types within

4
Accepted for publication in Weather and Forecasting. DOI 10.1175/WAF-D-24-0127.1.Unauthenticated | Downloaded 04/30/25 06:07 PM UTC



limited-area DA systems will help set expectations for future field campaigns. Moreover, this

research aims to enhance the use of observations provided by various observing systems and

inform the configurations of future DA systems.

This article is structured as follows: section 2 describes the DA systems, model configurations,

and the EFSOI algorithm. In section 3, we analyze both the forecasts’ behavior relative to the

verifying truth used in the EFSOI algorithm and the EFSOI results. Finally, section 4 provides a

summary and conclusion of this study.

2. Methodology

a. DA systems

EFSOI was applied to the CC and PC EnKFs described in Schwartz et al. (2022); hereafter S22.

Specifically, the PC and CC EnKFs both had 80 ensemble members with 15-km horizontal grid

spacing and were executed over the CONUS and adjacent areas (Fig. 1). Both EnKFs performed

hourly DA cycles over a period spanning 23 April to 20 May 2017 and used version 3.9.1.1 of

the Advanced Research Weather Research and Forecasting (WRF) model (Skamarock et al. 2008;

Powers 2017). A serial EnKF from the Data Assimilation Research Testbed (Anderson et al. 2009)

was used in both the PC and CC EnKFs.

In the CC EnKF, after initializing the EnKF from a global model at 0000 UTC 23 April 2017, the

background for DA was always the 1-hour ensemble forecast initialized from the previous analysis.

Thus, after 2 days of continuous DA cycles, the CC EnKF lost “memory” of its initialization from

the global model (S22), and other than lateral boundary conditions, the CC EnKF was independent

of global fields. Conversely, in the PC EnKF, daily at 1200 UTC, the EnKF was initialized from a

global ensemble (Fig. 2). Then, 12 hours of hourly forecast-analysis cycles were produced until

0000 UTC, after which, DA cycles ceased (i.e., the PC EnKF did not perform analyses between

0100 UTC – 1100 UTC). The next day, the PC EnKF was again initialized from a global ensemble

(S22). Aside from this difference in cycling methodology, both the CC and PC EnKFs had identical

configurations. Because 12 hours of cycling was performed in the PC EnKF, by 0000 UTC, the

PC EnKF had spun-up somewhat, but S22 showed how large scales in PC EnKF analyses still had

“memory” of the global ensembles that were used daily to initialize the PC EnKF. More details are

found in S22.
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Fig. 1: Computational domain with 15-km horizontal grid spacing, the corresponding model
topography in meters (shaded), and EFSOI target area (solid line).

As EFSOI requires forecasts initialized from adjacent analyses, the analyses from the CC and

PC EnKFs at both 2300 UTC and 0000 UTC were used to initialize 15-hour 80-member ensemble

forecasts. The output of these 15-hour forecasts was then used in EFSOI calculations (a total

of 23 forecasts). Although this work used the same DA systems as S22, the forecasts produced

and analyzed here fundamentally differed from S22. Specifically, S22 focused on 10-member

ensemble forecasts with 3-km horizontal grid spacing over the CONUS (where the 3-km forecasts

were initialized by downscaling 15-km EnKF analyses) whereas here we focus on 80-member,

15-km ensemble forecasts as a first approach to quantitatively investigate the observation impact

in PC and CC DA systems.

The observations assimilated in both EnKFs included data from rawinsondes, aircraft, wind

profilers, global positioning system radio occultation (GPSRO), infrared and water vapor channel

satellite-tracked wind, marine (including ship and buoy), land surface (including METAR and

SYNOP), and the Oklahoma and West Texas mesonet observing platforms (Table 2 in S22).

Identical observations were introduced into both the CC and PC EnKFs for assimilation. However,

an “outlier check” was applied as part of quality control, where observations were rejected if the

ensemble mean innovation was too large. Thus, in reality, the PC and CC EnKFs assimilated
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slightly different observations: CC assimilated 2261277 observations at the 0000 UTC cycle over

the entire experimental period while PC assimilated 2263233 observations; i.e. PC assimilated

0.08% more observations than CC.

b. EFSOI method

EFSOI calculations were performed within the EFSOI target area (Fig. 1) for both the CC

and PC EnKFs, following Kalnay et al. (2012). Instead of using their own analyses for EFSOI

calculations, an independent verifying truth was used, analyses from the ∼ 13-km Rapid Refresh

Model (RAP; Benjamin et al. (2016)), which were interpolated to the 15-km model grid using

the WRF preprocessing system to compute the calculations. RAP analyses were chosen as the

verifying truth to ensure that both DA systems’ errors were measured against the same reference.

Moreover, as Kotsuki et al. (2019) suggested, the use of a generic independent analysis can avoid

EFSOI overestimations of the beneficial impact rate of observations.

EFSOI was computed for 1-hour, 6-hour and 12-hour evaluation forecast times. It is worth

considering that a longer evaluation forecast time likely makes the EFSOI computation less accurate

due to linearization and localization advection errors. The schematic formulation of the EFSOI

applied to both DA systems is represented in Figure 2.

The EFSOI methodology employed is the same as in Casaretto et al. (2023), and the following text

is derived from there with minor modifications. The change in the forecast error (𝑒𝑡 |23 = 𝑋𝑡 |23−𝑋𝑣𝑡
and 𝑒𝑡 |00 = 𝑋𝑡 |00 − 𝑋𝑣𝑡 , Fig. 2) produced by the assimilation of observations at 0000 UTC is

approximately given by

△𝑒2 �
1

𝐾 −1
𝛿𝑦𝑇00 [𝜌 ◦𝑅

−1𝑌 𝑎𝑋
𝑓 𝑇

𝑡 |00]𝐶 (𝑒𝑡 |00 + 𝑒𝑡 |23) (1)

where K is the ensemble size, R is the observation error covariance matrix, 𝑌 𝑎 = 𝐻𝑋𝑎 is the

matrix of analysis ensemble perturbations in observation space valid at time 00 UTC, 𝑋 𝑓 𝑇

𝑡 |00 is

the ensemble forecast perturbation valid at time T=t initialized at time 00 UTC, and 𝛿𝑦00 is the

observation minus background (O-B) innovation vector at time 00 UTC. To reduce the impact

of sampling noise in covariance estimates due to the use of a limited size ensemble, the EnKFs

applied localization (horizontal localization full width of 1280 km and vertical localization full

width of 1.0 scale height; S22). Localization consists of the element wise multiplication of the
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Fig. 2: Schematic diagram of the implementation of EFSOI in CC and PC DA systems. The
background of CC EnKF is always the 1-hour ensemble forecast initialized from the previous
cycle’s analysis, while the PC EnKF background initializes from a global ensemble daily at 1200
UTC. Black squares represent EnKF analyses. The forecast error of the forecast initialized at 2300
UTC (𝑡 |23) and 0000 UTC (𝑡 |00) are calculated as the difference between these forecasts and the
RAP analysis (𝑋𝑣𝑡 ; verifying truth) at the evaluation forecast time t (𝑒𝑡 |23 and 𝑒𝑡 |00) for both DA
systems. The difference between (𝑡 |23) and (𝑡 |00) is due to the assimilation of observations at the
target analysis time (which is 0000 UTC in this case).

matrix 𝑅−1𝑌𝑎𝑋
𝑓 𝑇

𝑡 |00 by the localization matrix . It is assumed that the evaluation forecast time is

short enough that the impact of advection upon localization can be neglected (Lien et al. 2018).

In [Eq. 1], C is a positive definite matrix to measure the error of the forecast, which is necessary

for the EFSOI formulation but is not calculated explicitly. In this study we used the moist total

energy norm (MTE, Ehrendorfer et al. (1999)):

𝑒𝑇𝐶𝑒 = 𝑀𝑇𝐸 =
1
2

1
𝑆

∫
𝑆

[∫ 1

0
(𝑢′2 + 𝑣′2 +

𝐶𝑝

𝑇𝑟
𝑇

′2 + 𝐿2

𝐶𝑝𝑇𝑟
𝑞
′2) 𝑑𝜎 + 𝑅𝑑𝑇𝑟

𝑃2
𝑟

𝑃
′2
𝑠

]
𝑑𝑆 (2)

The difference between the state of the model and the reference (i.e., verifying truth) is expressed

as primed variables (u’,v’,T’,q’,P’) of the equation. The following constants were considered: Tr =

280 K (reference temperature), cp = 1,012 J g-1K-1 (specific heat of the air at constant pressure), L =

2510400 J Kg-1 (latent heat of condensation per unit mass), Rd = 287 J Kg-1 K-1 (dry air constant),

and Pr = 105 Pa (reference pressure). The integration extends over the full EFSOI horizontal

domain (S, Fig. 1) and vertical domain ( levels, 1000hPa to 100 hPa).
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If the observation impact [Eq. 1] from assimilating a given observation is negative, that indicates

a reduction in forecast error, whereas a positive observation impact value indicates an increase in

forecast error. Each observation is assigned an impact value for each DA cycle within the EFSOI

target area (Fig. 1). Based on this information, different statistics can be computed over the

entire observation dataset or over different subsets, such as a particular observation source (e.g.,

rawinsondes) or a particular observed quantity (e.g., pressure, temperature).

3. Results

a. Forecast comparison to RAP analyses

The forecasts corresponding to evaluation forecast times were compared to RAP analyses, which

also served as the verifying truth for the EFSOI in this study. This analysis was done to examine

how apart the two DA systems were and to correlate these results with EFSOI calculations. RAP

analyses were interpolated to the 15-km model grid using the WRF preprocessing system to

compute various statistics, and the comparison was conducted in the EFSOI target area (Fig. 1).

The time- and horizontally-averaged root-mean-square error (RMSE) and bias (forecast minus

analysis) of the ensemble mean forecast with respect to RAP analyses for zonal (U) and meridional

(V) wind components, temperature (T), and specific humidity (Q) are shown in Figure 3. Generally,

RMSE differences among the DA systems are larger for U and V compared to the thermodynamic

variables (T and Q), with PC having smaller RMSEs than CC for almost all pressure levels and

both forecast times (Figs. 3 c,d,g,h). For T and Q, the largest RMSE differences are in the lower

levels and PC has the smallest RMSEs, while above 500 hPa both DA systems have similar RMSEs

(Figs. 3 a,b,e,f). For U, V, and T, RMSE differences between CC and PC are larger at the 1-hour

lead time than at the 6-hour lead time, while for Q, differences between CC and PC are similar at

both forecast lead times. Differences between PC and CC RMSEs may be smaller at 6-hour than

at 1-hour because the impact of initial conditions decreases as the forecast lead time increases.

Biases of T, U, and V differ for each level and forecast lead time, and there is no clear signal of

which DA system performs best. The bias of Q is smaller for PC than for CC close to the surface,

1000 hPa up to 500 hPa (Figs. 3b,f). RMSEs and biases for the 12-hour evaluation forecast time

yield similar results as those for the 6-hour lead time, although the PC and CC values are even

closer than at 6-hour (not shown).
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Fig. 3: Vertical profiles of the temporally and spatially averaged bias (forecast minus analysis; lines
with circle markers) and RMSE (lines without markers) of PC (dashed lines) and CC (solid lines)
ensemble mean forecasts with respect to RAP analyses. a), e) Temperature [K]; b),f) Specific
humidity [KgKg-1]; c),g) zonal wind component [ms-1] and d),h) meridional wind component
[ms-1]. a)-d) is for the 1-hour forecast lead time and e)- h) is for the 6-hour forecast lead time for
forecasts initialized at 0000 UTC.

To ensure that these results are not biased because the RAP uses a partial cycling DA system

(Benjamin et al. 2016), the same analysis was carried out by comparing the PC and CC forecasts

with the European Centre for Medium-Range Weather Forecasts fifth-generation atmospheric

Reanalysis (ERA5, Hersbach et al. (2020)). The same behavior comparing the DA systems was

noted: PC has smaller RMSEs than CC (not shown).
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Fig. 4: Vertical profiles of the temporally and spatially averaged MTE and the terms that contribute
to the MTE [𝐽𝐾𝑔−1], calculated for PC (dashed line) and CC (solid line) ensemble mean forecasts
with respect to RAP analyses. a),e) moist total energy; b),f) humidity term; c),g) temperature
term; and d),h) kinetic term. a)-d) 1-hour forecast lead time and e)-h) 6-hour forecast lead time for
forecasts initialized at 0000 UTC.

Figure 4 displays the vertical profiles of MTE and each term related to kinetic energy, temperature,

and humidity [e.g., Eq. 2] for the ensemble mean forecasts. The RAP analysis is used as a reference

to ensure comparable results to the terms of the EFSOI equation. The term related to surface

pressure is not shown, as its contribution is between one and two orders of magnitude smaller.

For total MTE and the kinetic term, the errors at 1-hour forecast lead time (Figs. 4a, d) show

larger differences between CC and PC than the 6-hour forecast lead time (Figs. 4e, h). The kinetic
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term reveals that PC has lower error values compared to CC, indicating better performance when

using RAP as a reference, for both 1-hour and 6-hour forecast lead times (Figs. 4e, h). These

overall results align with the RMSEs in Fig. 3. The humidity term of both DA systems have similar

errors at most levels (Figs. 4b,f), except for the lower levels (1000-900 hPa) where PC outperforms

CC. Compared to the humidity term, the temperature term differences are more substantial and PC

outperforms CC at all levels and forecast times (Figs. 4c,g). Lastly, the total MTE for both forecast

times is smaller for PC than for CC through the entire profile, indicating that it is dominated by

the kinetic term in mid and upper levels and by the temperature term between 1000 and 800 hPa

(Figs. 4a,e). In addition, the humidity term seems to be the term that most contributes to the

maximum of MTE near the surface for both DA systems. MTE evaluated at the 12-hour lead time

again provides similar results as at the 6-hour lead time, although differences between PC and CC

are smaller (not shown).

Differences in forecast performance between PC and CC could be captured by examining the

EFSOI calculations, which will be presented in section 3.b-d. Given that PC generally has a

more accurate background state than CC (e.g., Figs. 3, 4), observations in CC could contribute a

relatively higher impact, highlighting areas where forecasts benefit more substantially from data

assimilation. These variations in observation impact are likely influenced by the distinct forecast

error dynamics in PC and CC, where observations help to adjust and improve the less accurate

CC background state. Thus, subtle but meaningful differences in observation impact between PC

and CC may be revealed through EFSOI. Understanding how observation impacts vary between

PC and CC systems is essential for optimizing data assimilation strategies. By analyzing EFSOI

with a focus on these forecast performance differences, we can improve our approach to integrating

observational data, ultimately enhancing forecast accuracy in models with varying background

states.

The EFSOI definition in [Eq. 1] states that the total impact of all assimilated observations is

represented by the difference in forecast error between two consecutive forecasts. The difference

between the MTE error of forecasts initialized at 0000 UTC and the MTE error of forecasts

initialized at 2300 UTC, both valid at the same time and using the RAP analysis as a reference,

can be interpreted as the total impact of the assimilated observations. Therefore, the MTE error

was calculated for each grid point and then was averaged to get a single value representative for

12
Accepted for publication in Weather and Forecasting. DOI 10.1175/WAF-D-24-0127.1.Unauthenticated | Downloaded 04/30/25 06:07 PM UTC



the EFSOI target area for each DA system, both for the forecasts initialized at 00 UTC (MTE 00)

and for the forecasts initialized at 23 UTC (MTE 23), for the valid times 01, 06 and 12 UTC.

Afterwards, these single values were subtracted to get the difference MTE diff defined as MTE 00

minus MTE 23.

Valid forecast time
01 UTC 06 UTC 12 UTC

MTE diff PC [𝐽𝐾𝑔−1] -0.4144 -0.7427 -0.9614
MTE diff CC [𝐽𝐾𝑔−1] -0.4022 -0.7589 -0.9533

|[MTE diff PC] - [MTE diff CC]| [𝐽𝐾𝑔−1] 0.0115 0.0162 0.0029

Table 1: Difference between the MTE error of forecasts initialized at 0000 UTC and the MTE
error of forecasts initialized at 2300 UTC, both valid at the same lead time and using the RAP
analysis as a reference, for each DA system (MTE diff PC, MTE diff CC), for three valid times.
The difference between the DA systems is also shown. See the text for more details.

Table 1 shows the results of MTE diff for the three valid evaluation times, which are the same

evaluation forecast times used for EFSOI. The negative values of MTE diff for both DA systems

and across all the valid times indicate that the assimilation of observations at 0000 UTC reduces

the forecast errors. As lead time increases, the differences between PC and CC diminish (i.e.

[MTE diff PC] - [MTE diff CC]), while the overall error reduction grows. The observation impact

differences between PC and CC may be more pronounced at shorter forecast times, as the forecasts

may contain more information from the global ensemble in the background. Additionally, as the

lead time increases, forecast errors such as MTE, bias, and RMSE become more similar between

PC and CC, as shown previously in Figures 3 and 4. Depending on the lead time, observations

may reduce forecast errors to a greater extent in either PC or CC (Table 1).

b. EFSOI results per observation sources

Based on the EFSOI computation described in section 2.b., we calculated both the cumulative

observation impact and the beneficial impact rate for each observation source to identify variations

in the influence of observations within the PC and CC DA systems (Fig. 5). The cumulative obser-

vation impact represents the sum of all individual observation impacts for a group of observations

(in this case, categorized by observation source).
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Fig. 5: a),d), g) Observation number (logarithmic scale); b),e), h) cumulative observation impact
[𝐽𝐾𝑔−1] and c),f),i) beneficial impact rate [%] per observation source assimilated, for CC and PC
over all 23 cases. a)-c) 1-hour , d)-f) 6-hour g)-i) 12-hour forecast lead time for forecasts initialized
at 0000 UTC. Underlined observation sources have statistically significant differences with 95%
confidence based on the Mann-Whitney-Wilcoxon rank-sum test comparing CC and PC trimmed
distributions between the 1st and 99th percentiles of observation impact [𝐽𝐾𝑔−1].

First, as the evaluation forecast time increases, the cumulative beneficial impact and beneficial

impact rate both decrease (Fig. 5b,e,h and c,f,i). This pattern aligns with findings from previous

studies where EFSOI overestimates, especially for shorter lead times such as 6-hour (Kotsuki

et al. 2019). The overall impact of the observation for both DA systems and evaluation forecast

times was beneficial and aligns with general findings from past studies (Lorenc and Marriott 2014;

Sommer and Weissmann 2014; Cardinali 2018), which reported beneficial impact rates between

50% and 55%. Both CC and PC have comparable proportions of beneficial observations for all the

evaluation forecast times.
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Despite differences in forecast performance (section 3.a.), these discrepancies do not appear

to be explained by variations in observation impact. When comparing the DA systems (CC

and PC) with EFSOI, similar results are obtained across some subsets. For instance, aircraft and

rawinsondes—two observation sources with the highest numbers of assimilated observations (Figs.

5a, d, g)— exhibit both substantial cumulative observation impact and beneficial impact rates above

50%. This results in a consistently beneficial impact across the three forecast times and DA systems

(Figs. 5b, c, e, f, h, i). Moreover, the cumulative impact values stand out significantly compared to

other subsets. These findings align with James and Benjamin (2017), who also highlighted aircraft

observations as a significant contributor to the overall impact of observations.

To understand observation impact, we also examined distributions of the observation impact

results of the subsets of the observations assimilated. They revealed many outliers, so the data

was trimmed between the 1st and 99th percentiles and the Mann–Whitney–Wilcoxon rank-sum

test (MWW, Wilks (2011)) was used to assess whether differences between CC and PC trimmed

distributions were statistically significant. The MWW test is a non-parametric statistical test used

to determine whether there is a significant difference between the distributions of two independent

samples. The test works by ranking all the values from both groups together and then comparing

the sums of these ranks. The null hypothesis is that the distributions of the two groups are identical

while the alternative states that the distributions of the two groups are different.

According to the MWW rank-sum test, rawinsonde observations impacts in PC and CC were

not statistically significantly different, indicating that both DA systems used these observations

similarly (Figs. 5b,e,h). Aircraft observations were only statistically different for 12-hour forecast

lead time, where the cumulative observation impact between CC and PC is broader (Fig. 5h).

Additionally, the estimated impacts decrease as lead time increases, likely due to the limitations of

the localization used in EFSOI, which struggles to account for time evolution, causing observation

impacts to diminish over time. This limitation is more pronounced in the upper troposphere, where

faster wind flows advect the impacts beyond the localization radii. As a result, the impacts from

aircraft observations likely decay more quickly than those from surface observations. Hotta et al.

(2017) encountered similar results regarding observation impact and the evaluation forecast lead

time.
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Results for Land SFC observations are statistically significantly different for the forecast lead

times and is the only subset with this behavior. The cumulative observation impact varies across

the forecast lead times; for the shorter lead times the observations are detrimental (positive value)

while they are beneficial for the longer times (negative value). Regarding the beneficial impact

rate, the values remain around 50% for all the forecast lead times.

The marine source exhibits a detrimental cumulative impact for PC and CC at 1-hour and 6-hour

forecast lead times (Figs. 5b,e), but beneficial impact rates have values ≥ 50% (Figs. 5c,f). This

finding means that while some marine observations may have a large detrimental impact, when

considering the beneficial impact rate—a measure of the relative relationship between detrimental

and beneficial observations—more observations are beneficial than detrimental. For the 12-hour

forecast lead time, the cumulative observation impacts have opposite signs when comparing PC

and CC (Fig. 5h), but for both DA systems, the beneficial impact rate is < 50% (Fig. 5i), which

means that more than half of the observations result in detrimental impacts.

Profiler and mesonet observations have a cumulative detrimental impact for both PC and CC at

1-hour (Fig. 5b), while the opposite occurs at 6-hour and 12-hour (Fig. 5e, h), with mixed results in

terms of beneficial impact rates (Figs. 5 c,f,i). For 6-hour forecasts, assimilating satellite-tracked

winds clearly improves PC, with a negative cumulative impact in Figure 5e,f. The MWW rank-sum

test revealed that these observation impacts were statistically significantly different between CC

and PC.

For GPSRO observations, while CC shows a consistent beneficial impact in 1-hour forecasts

(negative cumulative impact and beneficial impact rate ≥ 50%), the behavior of PC is not consistent

(positive cumulative impact and beneficial impact rate ≥ 50%) (Figs. 5b,c). However, according

to the MWW rank-sum test, PC and CC have no significant differences in the impact of GPSRO

observations, and therefore, extreme values of PC might be affecting its positive cumulative impact

(Fig. 5b).

These results emphasize the importance of carefully tuning assimilation settings for different

observation types, which is essential for optimizing DA systems. Depending on the specific

purpose of a DA system—whether solely to produce analyses or also to initialize forecasts from

those analyses—adjustments to assimilation techniques for certain observation sources may be

warranted. For instance, sensitivity experiments could help determine the effectiveness of including
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or excluding a particular observation source, adjusting localization settings, or applying techniques

such as thinning or superobbing to enhance data exploitation. The mixed EFSOI results suggest that

factors beyond observational data—possibly related to the DA system configuration itself—could

be contributing to the performance differences observed between CC and PC.

Moreover, differences between PC and CC observation impacts were only statistically significant

for observation sources providing relatively few observations and small impacts (e.g., mesonet

observations). For more numerous and impactful observations, like rawinsondes and aircraft,

differences between PC and CC observation impacts were not statistically significant. These

findings suggest that PC and CC used these most important observations similarly, and there were

mixed results regarding which DA system used the less impactful observations most beneficially.

Thus, overall, while PC forecasts were better than CC forecasts (Figs. 3,4), this result does not

obviously appear to be attributable to PC making better use of observations than CC. Although

the PC EnKF periodically ingests global data (while the CC EnKF does not), by 0000 UTC, the

primary impact of the ingested global fields in the PC EnKF is on the large scales (S22). However,

observations sample many different spatial scales, meaning that large scales alone are not reflected

in EFSOI statistics. Accordingly, different large-scale representations between PC and CC appear

to have been insufficient to meaningfully alter observation impacts. Yet, the large-scale state-space

differences between the two EnKFs may have had a major role in engendering forecast differences

between PC and CC.

c. EFSOI results per observed variables

Continuing our analysis of the diverse impacts of observations across the different DA systems,

Figure 6 presents the EFSOI observation impact and beneficial impact rate for the assimilated

observed variables, analyzed separately. Consistent with the patterns observed in Figure 5, both

the cumulative beneficial impact and the beneficial impact rate decrease as the evaluation forecast

time increases (Figs. 6b, e, h, and Figs. 6c, f, i).

The 3D variables—zonal wind (U), meridional wind (V), temperature (T), and relative humidity

(RH)—along with the surface zonal wind (US), consistently demonstrate forecast improvements in

terms of both cumulative observation impact and beneficial impact rates across the forecast times

and DA systems (Figs. 6b, c, e, f, h, i). For specific variables, such as T at 1-hour and 6-hour
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Fig. 6: a),d),g) Observation number (logarithmic scale), b),e),h) cumulative observation impact
[𝐽𝐾𝑔−1] and c),f),i) beneficial impact rate [%] per observation variable assimilated, for CC and
PC over all 23 cases. a)-c) 1-hour , d)-f) 6-hour g)-i) 12-hour forecast lead time for forecasts
initialized at 0000 UTC. Statistics are shown for zonal (U) and meridional (V) wind components;
temperature (T); relative humidity (RH), refractivity (REFRAC); surface pressure (PS); surface
zonal (US) and meridional (VS) wind components; surface temperature (TS); and surface relative
humidity (RHS). Underlined observation variable has statistically significant differences with 95%
confidence based on the Mann-Whitney-Wilcoxon rank-sum test comparing CC and PC trimmed
distributions between the 1st and 99th percentiles of observation impact [𝐽𝐾𝑔−1].

forecasts, RH at 6-hour forecasts, and the wind components (U and V) at 12-hour forecasts, the

differences in cumulative observation impacts between the CC and PC systems are statistically

significant, as determined by the MWW rank-sum test. These statistically significant differences

may explain the larger variations in beneficial impact rates for these variables compared to others.

Furthermore, surface pressure (PS), meridional wind (VS), and temperature (TS) lead to more

positive impacts at 6-hour and 12-hour compared to 1-hour in terms of beneficial impact rate in both
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DA systems (Figs. 6c,f,i). These surface variables exhibit detrimental impacts on the background

(Figs. 6b,c), and also larger innovations than other variables when observations are sourced from

mesonet, land SFC, and marine platforms (not shown). In contrast, surface relative humidity (RHS)

and US have beneficial impact rates ≥ 50% at the three forecast times (Figs. 6c,f,i). Therefore,

to improve the background of both DA systems, the assimilation of PS, VS, and TS observations

from mesonet, land SFC, and marine data sources should be revised, because more than half of

these observations result in a detrimental impact.

Notably, among the variables, U, V, and T have a higher amount of observations assimilated,

and they have larger cumulative observation impacts than the remaining variables, indicating a

broad impact in both DA systems. Differences between CC and PC are generally small for the

wind components for 1-hour and 6-hour forecast lead times, and there is no statistically significant

difference among their observation impacts according to the MWW rank-sum test (Figs. 6b,e).

However, for 12-hour forecast lead time the differences are bigger and statistically significant for

U and V (Fig. 6h), in consonance with the results encountered for aircraft (Fig. 5h). The reasons

for these results are unclear. CC has higher beneficial impact rates than PC for U and V for all

the forecast lead times (Figs. 6c,f,i). Observation impacts for T statistically significantly differ

between PC and CC at 1-hour and 6-hour forecast lead times (Figs. 6b,e), and PC has higher

beneficial impact rates for T than CC (Figs. 6c,f). As noted in Section 3.b, these variables also

illustrate that the estimated impacts diminish as lead time increases.

There is an overall trend that surface observations are more likely to have detrimental impacts,

and upper-air observations are more consistently beneficial. Surface observations are affected

by a multitude of local factors, such as terrain, land-use variability, and human activities, which

can introduce noise and non-representative data. These local factors make it challenging for DA

systems to extract useful information that benefits the entire atmospheric model. Errors or biases

in surface observations may propagate into the model, potentially destabilizing it or leading to

inaccuracies, hence the detrimental effect. Also, surface observations may not align well with the

model’s vertical grid, resulting in representativeness errors where the data mismatch the modeled

values. In addition, the model itself has difficulties to properly simulate the planetary boundary

layer, worsening with this mismatch.
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Fig. 7: Trimmed distributions between the 1st and 99th percentiles of observation impact (𝐽𝐾𝑔−1)
for both DA systems (CC grey, PC black) over all 23 cases for (a),(b) zonal wind component (U),
(c),(d) meridional wind component (V), and (e),(f) temperature (T) for a),c),e) 1-hour and b),d),f)
6-hour evaluation forecast times.

Holistically, these results suggest that for the most numerous and impactful variables, which are

the upper air observations (U, V, and T), CC and PC performed similarly. Results for other less

numerous and impactful variables were generally mixed, sometimes favoring CC and other times

PC. Accordingly, these findings are similar to those provided by Fig. 5 and suggest that poorer CC

forecasts relative to PC forecasts (Figs. 3,4) are not clearly due to inferior use of observations in

CC relative to PC.

d. Further analysis of EFSOI statistics

The cumulative observation impacts (Figs. 5,6) only provide a general perspective about how the

PC and CC EnKFs used observations. To gain a better understanding of observation impact, we will

delve deeper into analyzing the distributions of EFSOI statistics. This approach is novel, as previous

EFSOI studies have only focused on the cumulative or mean statistics, and examining distributions

allows for a deeper assessment of observation impact. As mentioned above, distributions of

observation impact revealed many outliers, so the data were trimmed between the 1st and 99th

percentiles for mean, median, and standard deviation calculations. In addition, significance tests

were performed to determine if differences between the means, medians, and standard deviations
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1-h 6-h
Mean Median STD Mean Median STD

U CC <PC CC >PC CC >PC
V CC >PC CC >PC
T CC >PC CC >PC CC >PC CC >PC

U-aircraft CC <PC CC >PC CC >PC
U-rawinsonde CC <PC CC >PC CC >PC
U-profiler CC >PC CC >PC CC >PC CC <PC CC >PC
U-satellite CC >PC
V-aircraft CC >PC CC >PC
V-rawinsonde CC >PC CC >PC
V-profiler CC >PC CC <PC CC <PC CC >PC
V-satellite CC >PC CC >PC CC >PC CC >PC CC <PC
T-Aircraft CC >PC CC >PC CC >PC CC >PC CC >PC
T-Rawinsonde CC <PC CC >PC CC <PC CC >PC

2

Fig. 8: Statistics of each distribution of observation impact for each DA system, evaluation forecast
time, variable, and source. Mean, median and standard deviation (STD) were calculated from
data trimmed between the 99th and 1st percentiles. The highlighted cells represent statistically
significant differences between the statistics of CC and PC. CC >PC cells filled with dark grey
while CC <PC cells filled with light grey. For the mean and median, smaller values indicate a
greater positive observation impact. The mean was tested with the t-student test, the median with
the MWW rank-sum test, and STD with Levene’s test. All tests were computed with a significance
level of 95%.

of the PC and CC DA systems’ observation impact distributions were statistically significant. For

the means, the t-student (Wilks 2011) test was used; for the medians, once again the MWW test

was employed; and for the standard deviation, Levene’s (Levene 1960) test was used. All tests

were computed with a significance level of 95%. Given that U, V, and T were most numerous and

had the largest observation impacts (e.g., Fig. 6), we focus on these three variables.

For 1-hour and 6-hour evaluation forecast times the observation impact distributions for the CC

EnKF have longer tails than those of the PC EnKF, and accordingly, standard deviations of the

observation impact are statistically significantly larger in the CC EnKF than in the PC EnKF for

all variables and sources (Figs. 7,8). This suggests that CC forecasts have a greater change in the

forecast error and greater errors (forecast - RAP), so the forecasts are further away from the RAP

analysis compared to PC forecasts. These results align with those analyzed in Figures 3 and 4.

Moreover, the CC EnKF distributions are typically left-skewed, indicating that more observations

have a very large beneficial impact than a very large detrimental impact (Fig. 7).

The greater variability in the CC EnKF is likely a reflection of its analyses being less constrained

than PC EnKF analyses, as PC analyses at 0000 UTC are still impacted by global analyses that
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assimilated many more observations than either limited-area EnKF (S22). Less constraint suggests

there was more variability in the CC EnKF state than in the PC EnKF state, which was manifested

by more varied observation impacts in the CC EnKF relative to the PC EnKF.

Both median and mean values of the U, V, and T distributions (Fig. 7) are negative: between

-0.0155 𝐽𝐾𝑔−1 and -0.0012 𝐽𝐾𝑔−1 for median values, between -50.0757 𝐽𝐾𝑔−1 and -9.3763 𝐽𝐾𝑔−1

for mean values. Overall, the assimilation of these variables reduces the forecast errors on both

evaluation forecast times and DA systems, as evidenced by the mean and median values being

negative. U wind component observations for CC have a statistically significantly more beneficial

effect than for PC (more negative). Accordingly, when these observations are assimilated, the

change in the forecast error for CC is reduced more than for PC. V wind component observations

are not statistically significantly different between PC and CC. Conversely, for T observations, the

median of PC is more beneficial than CC (more negative/smaller), meaning that assimilating these

observations reduces the forecast error for PC to a greater extent than for CC.

To identify which observation sources of these three variables provide the most beneficial

impact, the same statistics were computed separately for aircraft, rawinsondes, profilers, and

satellite-tracked winds (Fig. 8).

In examining the mean and median, our analysis reveals mixed results. There are no statistically

significant disparities between CC and PC for the medians of the EFSOI results pertaining to U and

V wind components for the 1-hour evaluation forecast time (Fig. 8). However, when evaluating the

6-hour evaluation forecast time, there are some statistically significant differences regarding wind.

For instance, in the case of V-profiler observations, CC has a statistically significantly smaller

median observation impact than PC, and vice versa for V-satellite observations.

Overall, analysis of the observation impact distributions did not indicate that either DA system

systematically used observations better than the other. This consistently suggests that differences in

observation impact are not strongly influenced by the assimilation process itself. Besides, the CC

background is generally less accurate than the PC background, allowing observations to potentially

have a larger relative impact in CC; the EFSOI analysis may not capture this subtle difference when

using cumulative observation impact.
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4. Summary and conclusions

In this study, the EFSOI method introduced by Kalnay et al. (2012) was applied to PC and CC

EnKF DA systems, each with 80 members and 15-km horizontal grid spacing, over a computational

domain spanning the entire CONUS. We evaluated the observation impacts on forecasts at 1-hour,

6-hour and 12-hour lead times across 23 forecasts to explore whether the two DA systems utilize

observations differently.

Performance metrics relative to RAP analyses (RMSE, bias, and MTE) indicate that PC forecasts

generally outperformed CC forecasts. However, the EFSOI analysis showed that observation

impacts were beneficial for both systems at all lead times, with differences between PC and

CC decreasing as the forecast lead time increased. These results suggest that initial differences

in observation impact may stem from PC’s closer alignment with global ensemble background

information in earlier cycles.

Further examination of observation sources revealed that PC and CC performed similarly for the

most impactful subsets, such as rawinsondes and aircraft, where differences were not statistically

significant. In contrast, statistically significant differences appeared for smaller observation sources

with limited impact, like mesonet observations. This highlights that PC and CC assimilated

critical observation sources comparably, while differences in less impactful observations were

inconsistent. These findings emphasize the complexity of observation impacts and the need for

ongoing optimization of observational strategies for better forecasts.

The assimilation of variables such as U, V, T, and RH showed an overall forecast improvement

across both systems, with significant differences between CC and PC across the forecast times.

However, no consistent signal emerged to explain the forecast differences between PC and CC.

Upper-air observations were consistently beneficial, while surface observations tended to have

detrimental impacts, likely due to localized noise and errors.

Finally, our analysis introduces further insights through the examination of EFSOI statistics

distributions of U,V and T. They revealed greater variability in observation impacts for CC,

suggesting less constraint in its analyses. While mean and median EFSOI statistics favored CC for

U and V wind components, T observations favored PC. These asymmetrical distributions highlight

differences in how each system assimilated certain observations, though these differences did not

translate into systematic superiority for either system.
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Crucially, these results underscore that the differences in forecast performance between PC and

CC were likely driven by factors beyond observation use. Broader DA system processes, such as

the ingestion of global fields in the PC system and their influence on the large-scale model state,

appear to play a key role. This influence principally includes a more accurate initialization of the

large-scale model state, which interacts with the model’s dynamical and physical processes to yield

better forecasts. Additionally, the periodic re-initialization in the PC system helps prevent error

propagation in forecasts. These factors are not fully captured by EFSOI statistics, complicating the

interpretation of differences in observation impacts.

Operational services often use either PC or CC systems, making it critical to understand how

their fundamental differences influence forecast outcomes. While EFSOI offers a useful diagnostic

tool, its limitations in capturing some system processes, as mentioned before, suggest that further

research is needed to isolate the sources of performance differences. The findings in this manuscript

may not extend directly to other PC and CC systems with different cycle lengths. Even when

considering the same PC and CC systems, if the evaluation is taken into account for forecasts

initialized from analyses of the earlier cycles in PC, the observation impacts may differ from the

ones obtained for forecasts initialized from the last cycling analyses in PC.

EFSOI remains valuable as an initial diagnostic for exploring observation impacts and guiding

future experiments. However, to enhance the effectiveness of DA systems, assimilation techniques

for certain observation sources and variables should be carefully reviewed and tailored to specific

forecast objectives and operational contexts.
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