

BOLETÍN AGROMETEOROLÓGICO MENSUAL

SEPTIEMBRE 2025

Volumen IX C.D.U.: 631:551.5 (82)(055)

Editores:

Elida Carolina González Morinigo Lorena Judith Ferreira

Redactores:

Elida Carolina González Morinigo Natalia Soledad Bonel María Eugenia Bontempi María Gabriela Marcora

Colaboradores:

Silvana Carina Bolzi Cam Córdoba Fradinger

> Dirección Servicios Sectoriales Servicio Meteorológico Nacional

https://www.smn.gob.ar/ Servicios | Sector Agropecuario

& +54 11 5167 6767 | interno 18901

✓ agro@smn.gov.ar

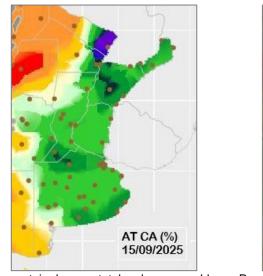
Servicio Meteorológico Nacional Dorrego 4019 (C1425GBE), Ciudad Autónoma de Buenos Aires. Argentina

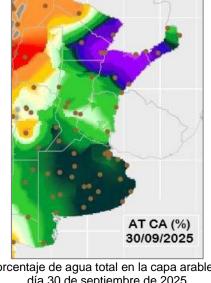
f SMN.ar

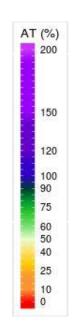
(i) smn_argentina

xmn_argentina

smnPRENSA

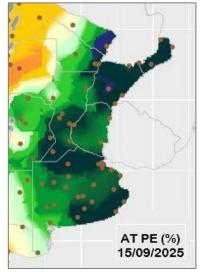

ÍNDICE

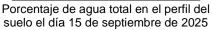

Generalidades 1.1 Aspectos agronómicos y agrometeorológicos generales del mes 1 1.2 Principales características por regiones 4 Temperatura Temperatura media 1ra década 2.1 5 2.2 Temperatura media 2da década 6 Temperatura media 3da década 2.3 7 2.4 Heladas 9 2.5 Grados día 11 2.6 12 Mapas de temperatura Precipitación 3.1 Precipitación acumulada 1ra década 12 Precipitación acumulada 2da década 3.2 14 Precipitación acumulada 3ra década 15 3.3 3.4 Mapas de precipitación 17 Índices satelitales 4.1 Índice normalizado de vegetación 18 4.2 Anomalía del índice normalizado de vegetación 19 4.3 Humedad del suelo 20 Pronóstico de rendimiento - ProRindes 5.1 22 Pronóstico de rendimientos para los cultivos de trigo y cebada (fecha de inicio: 28/09/2025) Definición y abreviaturas de parámetros empleados 23 Anexo: informe técnico sobre ProRindes 25

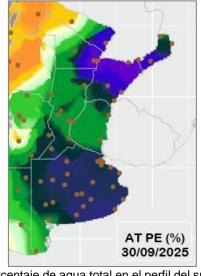


1.1 ASPECTOS AGRONÓMICOS Y AGROMETEOROLÓGICOS **GENERALES DE SEPTIEMBRE 2025.**

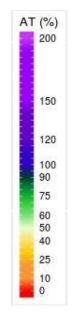
Avanza la siembra de girasol y de las variedades de maíz temprano, en las zonas donde la condición de piso lo permite. La cebada y el trigo transitan las etapas de macollaje, encañazón o espigazón, en el sur de la región Pampeana, mientras que en el norte alcanzaron la floración. Se visualiza la aparición de enfermedades fúngicas, favorecidas por la elevada humedad ambiental.



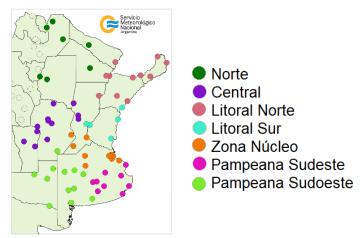



Porcentaje de agua total en la capa arable el día 15 de septiembre de 2025

Porcentaje de agua total en la capa arable el día 30 de septiembre de 2025


Capa arable (primeros 10 cm)

Porcentaje de agua total en el perfil del suelo el día 30 de septiembre de 2025

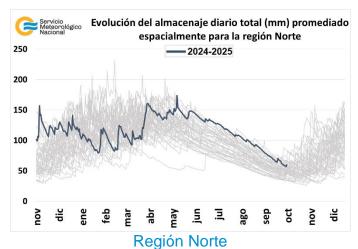


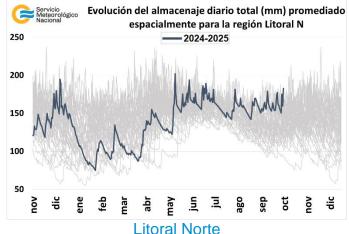
Perfil (profundidad 1m)

Más información en: https://www.smn.gob.ar/monitoreo_estados

► Monitoreo de cobertura vegetal, suelos y agua | Suelos

A continuación se presenta la evolución del almacenaje (BHOA) en el último año frente al periodo 1981-2024. Cada gráfico representa una zona del país, y los datos fueron obtenidos promediando los valores de las estaciones disponibles en la zona, según puede verse en el mapa:

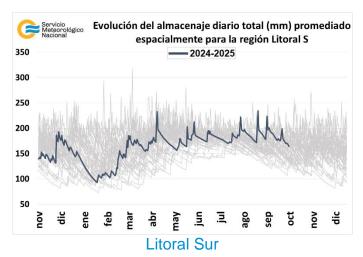


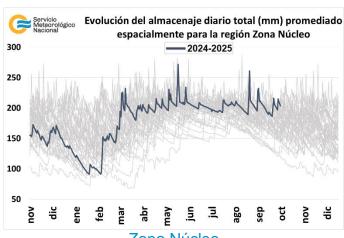

En los gráficos se muestra el almacenaje total diario del último año, en línea gruesa. Las líneas finas corresponden a los mismos días de los años anteriores, desde 1981. La presentación permite apreciar cualitativamente cómo se ubicó la evolución de los últimos doce meses con respecto a la distribución de los años anteriores.

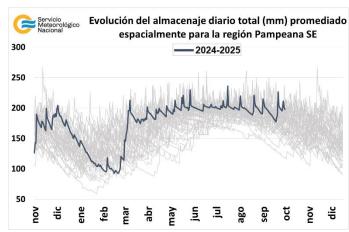
En la región Norte han ocurrido algunas precipitaciones, si bien el almacenaje de agua en el suelo presenta una disminución, lo que es normal para la época del año, su valor es de los más altos registrados desde 1981.

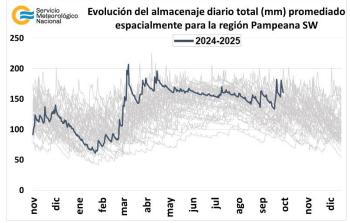
En la zona Litoral Norte se produjeron abundantes precipitaciones a lo largo de septiembre, esto mantuvo a los suelos con elevada humedad, registrándose zonas con excesos hídricos.

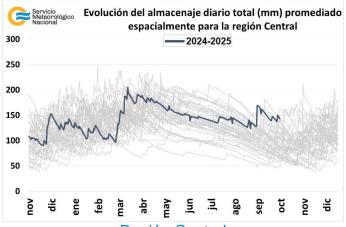
En el sur del Litoral las lluvias más abundantes ocurrieron en la segunda década de septiembre, produciendo un aumento en el contenido de agua en el suelo transitorio. Dicha humedad se perdió rápidamente en la tercera década.




En la zona Núcleo y sudeste de la región Pampeana las precipitaciones favorecieron a que los suelos mantengan elevada su humedad, registrándose excesos hídricos en algunos sectores. El mes finalizó con los valores de almacenaje de agua edáfico más altos desde 1981.

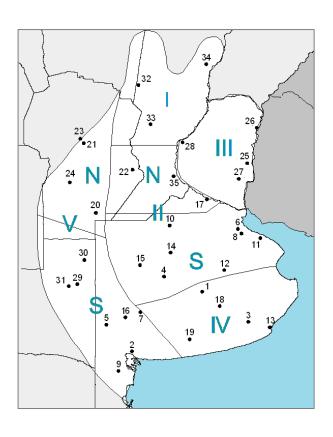

En el sudoeste de la región Pampeana las lluvias más abundantes ocurrieron en la segunda y tercera década de septiembre produciendo una importante recarga de humedad en los suelos, registrándose excesos hídricos en el sector este de esta región.


En la región central ocurrieron precipitaciones a partir de la segunda década, dichas lluvias produjeron un aumento en el contenido de agua en el suelo, encontrándose entre los valores más altos desde 1981.


Zona Núcleo

Pampeana sudeste

Pampeana sudoeste


Región Central

1.2. PRINCIPALES CARACTERÍSTICAS POR REGIONES.

En esta sección se presentan las características agronómicas y agrometeorológicas más significativas del mes teniendo en cuenta las regiones trigueras que se muestran en la siguiente figura.

Estaciones	Latitud S	Longitud O
1) Azul (1)	36°45'	59°50
2) Bahía Blanca (1)	38°44'	62º10'
3) Balcarce (2)	37°45′	58º18'
4) Bolívar (1)	36º15'	61°02
5) Bordenave (2)	37º51'	63º01'
6) Castelar (2)	34º40'	58°39'
7) Coronel Suarez (1)	37º26'	61º53'
8) Ezeiza (1)	34°49'	58°32'
9) Hilario Ascasubi (2)	39°23'	62°37'
10) Junín (1)	34º33'	60°55'
11) La Plata (1)	34°58'	57°54'
12) Las Flores (1)	36°04'	59°06'
13) Mar del Plata (1)	37°56'	57°35'
14) Nueve de Julio (1)	35°27'	60°53'
15) Pehuajó (1)	35°52'	61°54'
16) Pigüé (1)	37º36'	62°23'
17) San Pedro (2)	33º41'	59°41
18) Tandil (1)	37º14'	59º15'
19) Tres Arroyos (1)	38°20'	60°15'
20) Laboulaye (1)	34º08'	63°22'
21) Manfredi (2)	31º49'	63°46'
22) Marcos Juárez (1)	32°42′	62°09'
23) Pilar (1)	31º40'	63°53'
24) Río Cuarto (1)	33°07'	64º14'
25) Concepción del Uruguay (2)	32º29'	58°20'
26) Concordia (1)	31º18'	58º01'
27) Gualeguaychú (1)	33°00'	58°37'
28) Paraná (1)	31º47'	60°29'
29) Anguil (2)	36°30'	63°59'
30) General Pico (1)	35°42'	63°45'
31) Santa Rosa (1)	36°34'	64º16'
32) Ceres (1)	29°53'	61°57'
33) Rafaela (2)	31°11'	61°11'
34) Reconquista (1)	29°11'	59°42'
35) Rosario (1)	32°55'	60°47'

- (1) Estaciones Meteorológicas del SMN
- (2) Estaciones Meteorológicas del INTA

REGIÓN I: Los trigales se hallan en la fase de llenado de los granos con muy buenas condiciones generales. Avanza la siembra de girasol, con interrupciones debido a las precipitaciones registradas. Finalizó la siembra de maíz temprano. Los lotes ya emergidos transitan las primeras etapas de desarrollo vegetativo, con muy buenas condiciones generales.

REGIÓN II NORTE: la cebada se encuentra en excelente estado general. Los trigales atraviesan la etapa de encañazón y aparición de la hoja bandera, con presencia de enfermedades fúngicas e insectos. Avanza la siembra de girasol y maíz temprano, obteniéndose los primeros lotes emergidos con buenas condiciones generales.

REGIÓN II SUR: la cebada transita las etapas de macollaje o encañazón, según las zonas, y con excedentes hídricos en las áreas bajas. Los trigales se hallan en estado de floración, con humedad adecuada, a pesar de que algunas zonas bajas presentan falta de piso.

Prosigue la siembra de las variedades de maíz temprano en las zonas altas y donde la condición de piso lo permite.

REGIÓN III: las condiciones de humedad elevada favorecieron al desarrollo de enfermedades fúngicas en la cebada, que están siendo tratadas. Los trigales se encuentran en las etapas de encañazón, espigazón o floración, con presencia de roya y mancha amarilla. Avanza la siembra de girasol y maíz temprano, mostrando una buena emergencia, favorecidos por las buenas condiciones de humedad de suelo.

REGIÓN IV: la cebada y el trigo se observan en las etapas de macollaje o encañazón, según las zonas, y con excedentes hídricos en las áreas bajas.

REGIÓN V NORTE: la cebada transita las etapas de encañazón o inicio de floración, bajo muy buenas condiciones generales y sin presencia de plagas. Los trigales se observan con la espiga embuchada o en inicio de floración, bajo buenas condiciones, aunque con presencia de roya. Avanza la siembra de girasol y maíz temprano, favorecidos por las buenas condiciones de humedad de suelo.

REGIÓN V SUR: la cebada y el trigo se encuentran en etapa de crecimiento bajo buenas condiciones generales.

2. INFORME DE TEMPERATURA

En las siguientes tablas y mapas se muestran los valores de temperatura de las distintas décadas del mes de septiembre de 2025.

2.1 PRIMERA DÉCADA

Las temperaturas máximas estuvieron por debajo del promedio en el norte y centro de la región, con apartamientos mayores a 4°C en el NEA; y por encima de la media en La Pampa y la Patagonia. Las máximas, mostraron anomalías negativas en casi todo el país; sólo fueron positivas en algunas localidades del noreste y sudoeste de Buenos Aires, noroeste de Río Negro, noreste de Neuquén, sur de Santa Cruz y Tierra del Fuego.

Se registraron sensaciones térmicas mínimas absolutas inferiores a 0°C en gran parte del territorio.

Ocurrieron heladas agrometeorológicas (temperaturas mínimas a nivel del abrigo meteorológico inferiores a 3°C) con una frecuencia de entre 1 y 7 días en la región Pampeana. Además, en esta misma zona, hubo días con temperatura a 5 cm del suelo inferior a 0°C con mayor frecuencia en el sudoeste de Buenos Aires; donde también ocurrieron temperaturas mínimas absolutas cercanas al suelo entre -2 y -6°C.

Década 1 SEPTIEMBRE 2025

Estaciones mete	eorológicas	Tempe	eratura m	áxima	Tempe	eratura n	nínima	Temp	eratura r	media
Localidad	Provincia	MED	ABS	DIA	MED	ABS	DIA	MED	PRO	DN
Azul	Buenos Aires	15.6	20.4	9	3.3	-2.4	6	9.5	9.9	-0.4
Bahia Blanca	Buenos Aires	17.5	23.3	9	3.2	-3.6	5	10.4	10.7	-0.3
Balcarce	Buenos Aires	15.6	21.3	9	5.0	-0.7	6	10.3	10.1	0.2
Bolívar	Buenos Aires	16.4	21.5	9	4.0	-1.2	5	10.2	10.9	-0.
Bordenave	Buenos Aires	17.4	22.5	9	2.1	-4.0	5	9.8	10.4	-0.
Castelar	Buenos Aires	17.5	24.0	10	5.4	-1.1	5	11.5	13.4	-2.
Coronel Suarez	Buenos Aires	16.2	21.4	9	0.9	-4.4	6	8.5	9.3	-0.
Ezeiza	Buenos Aires	17.1	24.3	10	6.0	0.2	5	11.5	13.1	-1.
Hilario Ascasubi	Buenos Aires	18.0	24.0	9	3.9	-1.8	4	10.9	10.7	0.2
Junín	Buenos Aires	17.1	22.7	10	4.3	-0.4	5	10.7	12.4	-1.
La Plata	Buenos Aires	16.5	22.7	9	5.0	-0.2	6	10.8	12.1	-1.
Las Flores	Buenos Aires	16.0	21.0	9	6.7	1.5	5	11.4	11.3	0.0
Mar Del Plata	Buenos Aires	15.8	19.9	9	4.1	-1.7	6	9.9	9.8	0.
Nueve de Julio	Buenos Aires	17.2	22.0	9	5.7	1.7	5	11.5	12.1	-0.
Pehuajó	Buenos Aires	16.9	21.4	9	5.7	1.5	5	11.3	11.4	-0.
Pigüé	Buenos Aires	15.3	21.2	9	2.4	-2.7	5	8.8	9.4	-0.
San Pedro	Buenos Aires	17.8	25.6	10	5.8	-0.6	5	11.8	13.7	-1.
Tandil	Buenos Aires	15.3	21.2	9	2.0	-3.7	6	8.7	9.5	-0.
Tres Arroyos	Buenos Aires	16.4	22.0	9	4.0	-0.5	6	10.2	9.8	0.4
Laboulaye	Córdoba	18.6	24.1	10	3.5	0.5	6	11.0	12.2	-1.
Manfredi	Córdoba	20.2	28.3	10	2.7	-1.4	7	11.5	13.2	-1.
Marcos Juárez	Córdoba	18.8	26.0	10	4.6	-0.5	6	11.7	13.3	-1.
Pilar	Córdoba	19.3	28.2	10	5.4	2.2	6	12.3	13.9	-1.
Río Cuarto	Córdoba	18.5	25.5	9	5.6	1.9	5	12.1	12.8	-0.
Concordia	Entre Ríos	19.0	25.0	10	7.9	0.5	6	13.4	15.5	-2.
Gualeguaychú	Entre Ríos	17.4	25.5	10	6.7	2.2	6	12.0	14.1	-2.
Paraná	Entre Ríos	17.9	26.4	10	7.3	2.5	5	12.6	14.8	-2.
Anguil	La Pampa	20.0	25.2	9	1.4	-4.8	5	10.7	11.3	-0.
General Pico	La Pampa	19.5	25.3	9	3.7	-2.2	4	11.6	12.1	-0.
Santa Rosa	La Pampa	19.4	25.7	9	3.5	-1.5	4	11.5	11.3	0.2
Ceres	Santa Fe	21.1	31.7	10	7.2	2.6	6	14.2	15.9	-1.
Rafaela	Santa Fe	18.5	28.1	10	6.2	0.6	5	12.4	15.5	-3.
Reconquista	Santa Fe	19.5	27.6	10	9.4	3.9	6	14.4	17.2	-2.
Rosario	Santa Fe	18.1	25.6	10	6.1	0.7	5	12.1	14.1	-2.

2.2 SEGUNDA DÉCADA

Las temperaturas máximas presentaron desvíos positivos en todo el territorio nacional, en promedio a lo largo del el período analizado. Asimismo, las temperaturas mínimas mostraron valores superiores a los normales en casi todo el país, con las mayores anomalías positivas hacia la región norte y noroeste y de manera aislada en el centro del territorio. Se registraron hasta 5 días con heladas agrometeorológicas (temperaturas mínimas a nivel del abrigo meteorológico inferiores a 3°C) en el sur de la región Pampeana, aunque estadísticamente estos valores se hallan dentro de los parámetros normales para el mes de septiembre.

Década 2 **SEPTIEMBRE 2025**

Estaciones mete	eorológicas	Tempe	eratura m	iáxima	Tempe	eratura n	nínima	Temp	eratura r	nedia
Localidad	Provincia	MED	ABS	DIA	MED	ABS	DIA	MED	PRO	DN
Azul	Buenos Aires	21.2	23.6	17	7.3	3.4	12	14.2	10.4	3.8
Bahia Blanca	Buenos Aires	22.0	26.8	16	7.8	0.7	14	14.9	11.8	3.1
Balcarce	Buenos Aires	20.2	25.0	17	7.7	4.0	12	13.9	11.0	2.9
Bolívar	Buenos Aires	22.4	25.1	18	10.2	4.7	11	16.3	11.7	4.6
Bordenave	Buenos Aires	22.5	25.9	18	8.6	-1.5	14	15.5	11.2	4.3
Castelar	Buenos Aires	22.3	25.1	18	11.1	5.6	11	16.7	13.8	2.9
Coronel Suarez	Buenos Aires	21.7	25.0	17	7.2	1.8	14	14.5	10.2	4.3
Ezeiza	Buenos Aires	22.0	25.6	17	10.7	5.5	12	16.4	13.6	2.8
Hilario Ascasubi	Buenos Aires	22.0	27.9	16	7.6	0.7	14	14.8	11.8	3.0
Junín	Buenos Aires	23.0	26.2	17	10.8	5.6	11	16.9	13.0	3.9
La Plata	Buenos Aires	20.2	22.2	11	9.8	4.3	12	15.0	12.7	2.3
Las Flores	Buenos Aires	20.7	24.0	17	10.9	7.0	11	15.8	11.9	3.9
Mar Del Plata	Buenos Aires	17.7	21.6	17	7.3	3.6	11	12.5	10.4	2.1
Nueve de Julio	Buenos Aires	23.1	26.4	18	11.7	7.8	11	17.4	12.9	4.5
Pehuajó	Buenos Aires	22.7	25.4	17	12.1	6.5	11	17.4	12.3	5.1
Pigüé	Buenos Aires	21.3	24.7	18	9.0	4.3	14	15.1	10.3	4.8
San Pedro	Buenos Aires	23.9	25.7	17	12.4	7.1	12	18.2	14.2	4.0
Tandil	Buenos Aires	20.3	23.1	17	6.2	1.5	16	13.3	10.0	3.3
Tres Arroyos	Buenos Aires	21.7	23.7	15	9.7	6.0	15	15.7	10.7	5.0
Laboulaye	Córdoba	24.6	28.4	18	11.9	5.2	12	18.2	13.0	5.2
Manfredi	Córdoba	26.7	30.9	19	11.1	1.8	11	18.9	13.5	5.4
Marcos Juárez	Córdoba	26.5	30.0	19	10.8	4.8	11	18.6	14.0	4.6
Pilar	Córdoba	25.4	29.3	19	13.3	6.8	11	19.4	14.8	4.6
Río Cuarto	Córdoba	25.2	30.0	18	12.9	6.2	11	19.1	14.0	5.1
Concordia	Entre Ríos	24.8	30.0	19	13.0	6.5	12	18.9	15.8	3.1
Gualeguaychú	Entre Ríos	24.1	26.4	17	12.1	6.0	12	18.1	14.6	3.5
Paraná	Entre Ríos	25.8	30.0	19	13.5	8.0	13	19.6	15.3	4.3
Anguil	La Pampa	25.2	29.4	18	8.8	0.2	14	17.0	12.3	4.6
General Pico	La Pampa	25.0	28.2	18	10.7	4.5	11	17.8	13.3	4.5
Santa Rosa	La Pampa	24.6	29.2	16	10.4	5.4	11	17.5	12.5	5.0
Ceres	Santa Fe	28.7	37.8	19	14.3	6.4	12	21.5	16.5	5.0
Rafaela	Santa Fe	26.1	32.5	19	13.5	4.3	11	19.8	15.2	4.5
Reconquista	Santa Fe	27.3	32.5	19	14.8	7.7	12	21.1	17.4	3.7
Rosario	Santa Fe	25.4	28.0	17	12.1	5.6	11	18.7	14.7	4.0

2.3 TERCERA DÉCADA

Las temperaturas máximas medias presentaron un patrón de anomalías superiores a las normales en la franja oeste y en la Patagonia e inferiores en el centro del Litoral y la provincia de Buenos Aires. Las anomalías de las temperaturas mínimas tuvieron, en general, menor magnitud que las anteriores, y mostraron signo contrario en Buenos Aires, donde fueron positivas. En tanto, en las localidades del sur de la región productiva de secano, ocurrieron heladas agronómicas y meteorológicas en hasta la mitad de los días de la década.

Década 3 **SEPTIEMBRE 2025**

Estaciones mete	orológicas	Tempe	eratura m	ıáxima	Tempe	eratura n	nínima	Temp	eratura r	nedia
Localidad	Provincia	MED	ABS	DIA	MED	ABS	DIA	MED	PRO	DN
Azul	Buenos Aires	17.5	22.3	29	6.5	-0.1	24	12.0	11.9	0.1
Bahia Blanca	Buenos Aires	18.5	24.3	28	6.6	-1.2	24	12.6	13.0	-0.4
Balcarce	Buenos Aires	17.0	23.2	29	7.2	-0.4	24	12.1	11.7	0.4
Bolívar	Buenos Aires	18.5	22.4	28	8.0	3.0	24	13.3	13.0	0.3
Bordenave	Buenos Aires	18.3	23.4	28	6.0	-0.5	24	12.1	12.4	-0.2
Castelar	Buenos Aires	21.0	24.8	29	9.5	4.6	23	15.2	14.9	0.3
Coronel Suarez	Buenos Aires	17.5	22.0	28	5.8	-0.5	24	11.7	11.5	0.2
Ezeiza	Buenos Aires	20.3	23.8	29	8.6	4.6	23	14.5	14.7	-0.3
Hilario Ascasubi	Buenos Aires	19.2	25.3	28	6.8	-0.7	24	13.0	12.8	0.2
Junín	Buenos Aires	20.6	23.5	28	8.8	5.0	23	14.7	14.2	0.5
La Plata	Buenos Aires	19.3	23.5	30	7.9	3.3	24	13.6	13.7	-0.1
Las Flores	Buenos Aires	18.4	22.5	29	9.2	5.5	24	13.8	13.1	0.7
Mar Del Plata	Buenos Aires	16.2	22.4	29	6.5	-0.6	24	11.4	11.1	0.3
Nueve de Julio	Buenos Aires	19.9	23.6	28	8.8	6.0	24	14.4	14.2	0.2
Pehuajó	Buenos Aires	19.3	23.1	28	9.5	7.0	23	14.4	13.7	0.7
Pigüé	Buenos Aires	16.8	21.8	28	6.3	1.3	24	11.5	11.5	0.0
San Pedro	Buenos Aires	22.1	25.0	30	9.8	5.5	23	15.9	15.9	0.0
Tandil	Buenos Aires	17.0	22.0	29	5.1	-2.0	24	11.1	11.2	-0.1
Tres Arroyos	Buenos Aires	17.2	23.8	28	6.3	1.2	24	11.7	11.8	-0.1
Laboulaye	Córdoba	23.0	25.5	28	9.2	4.5	23	16.1	14.4	1.7
Manfredi	Córdoba	25.0	27.5	29	6.4	2.1	22	15.7	14.5	1.3
Marcos Juárez	Córdoba	23.5	25.3	26	8.4	3.6	23	15.9	15.5	0.4
Pilar	Córdoba	24.0	26.8	29	9.2	5.5	28	16.6	16.0	0.6
Río Cuarto	Córdoba	23.4	26.5	29	9.2	6.6	24	16.3	15.2	1.1
Concordia	Entre Ríos	23.2	26.2	26	11.3	6.5	23	17.3	17.0	0.3
Gualeguaychú	Entre Ríos	22.3	26.5	26	9.3	1.7	22	15.8	15.9	-0.1
Paraná	Entre Ríos	23.5	26.8	26	10.5	8.2	23	17.0	16.5	0.5
Anguil	La Pampa	21.8	27.5	28	7.5	2.1	23	14.6	13.5	1.2
General Pico	La Pampa	21.2	26.0	28	8.5	5.6	23	14.9	14.5	0.4
Santa Rosa	La Pampa	20.8	27.0	28	8.0	4.0	24	14.4	13.7	0.7
Ceres	Santa Fe	26.3	31.5	26	11.5	6.1	23	18.9	17.8	1.1
Rafaela	Santa Fe	24.2	26.6	26	9.6	4.6	28	16.9	17.1	-0.2
Reconquista	Santa Fe	24.6	28.1	26	12.3	9.0	23	18.5	18.6	-0.1
Rosario	Santa Fe	22.8	25.4	26	9.7	4.6	23	16.2	16.1	0.1

Referencias correspondientes a las tablas de temperaturas (°C) por década

MED: valor medio

PRO: valor promedio del período 1991-2020 ABS: valor absoluto

DN: desvío del promedio DÍA: fecha en que se registró el valor absoluto

2.4 HELADAS

PRIMERA HELADA Hasta el 15 de julio de 2025

Estaciones meteor	ológicas	Tmin<	3°C	Tmin<	0°C	Tmi5suelo<0°C
Localidad	Provincia	Primera helada 2025	FMPH	Primera helada 2025	FMPH	Primera helada 2025
Azul	Buenos Aires	18/02	25/03	29/05	29/04	05/04
Bahia Blanca	Buenos Aires	04/04	13/04	21/05	11/05	X
Balcarce	Buenos Aires	01/04	03/05	26/06	05/06	SD
Bolívar	Buenos Aires	04/04	09/04	29/05	17/05	18/02
Bordenave	Buenos Aires	04/04	19/03	20/05	07/05	SD
Castelar	Buenos Aires	20/05	03/05	24/06	04/06	SD
Coronel Suárez	Buenos Aires	18/02	18/03	20/05	24/04	18/02
Ezeiza	Buenos Aires	20/05	06/05	24/06	08/06	X
Hilario Ascasubi	Buenos Aires	04/04	10/04	21/05	09/05	SD
Junín	Buenos Aires	05/04	25/04	29/05	21/05	05/04
La Plata	Buenos Aires	29/05	11/05	26/06	11/06	20/05
Las Flores	Buenos Aires	29/05	15/04	24/06	17/05	X
Mar Del Plata	Buenos Aires	19/05	16/04	01/06	22/05	19/05
Nueve de Julio	Buenos Aires	29/05	08/05	24/06	05/06	X
Pehuajó	Buenos Aires	28/05	25/04	24/06	23/05	29/05
Pigüé	Buenos Aires	04/04	26/03	28/05	27/04	04/04
San Pedro	Buenos Aires	29/05	04/05	15/06	10/06	SD
Tandil	Buenos Aires	01/04	08/03	05/04	30/04	29/06
Tres Arroyos	Buenos Aires	19/05	20/04	29/05	21/05	X
Laboulaye	Córdoba	04/04	01/05	29/05	27/05	X
Manfredi	Córdoba	04/04	13/04	28/05	07/05	SD
Marcos Juárez	Córdoba	04/04	30/04	29/05	27/05	04/04
Pilar	Córdoba	29/05	07/05	29/05	03/06	29/05
Río Cuarto	Córdoba	28/05	10/05	29/05	05/06	29/05
Concepción del Uruguay	Entre Ríos	05/04	18/05	10/06	15/06	SD
Concordia	Entre Ríos	29/05	21/05	24/06	14/06	01/06
Gualeguaychú	Entre Ríos	29/05	14/05	20/06	11/06	X
Paraná	Entre Ríos	15/06	11/06	30/06	27/06	20/06
Anguil	La Pampa	04/04	27/03	04/04	24/04	SD
General Pico	La Pampa	04/04	23/04	28/05	17/05	04/04
Santa Rosa	La Pampa	04/04	14/04	04/04	11/05	04/04
Ceres	Santa Fe	29/05	22/05	29/05	17/06	29/05
Rafaela	Santa Fe	SD	06/05	SD	05/06	SD
Reconquista	Santa Fe	29/05	12/06	24/06	27/06	X
Rosario	Santa Fe	29/05	07/05	29/05	02/06	29/05

Referencias correspondientes a la tabla de fechas de primera helada

Primera helada 2025: fecha en que se registró por primera vez una temperatura mínima inferior a 3°C o 0°C. Se considera primera helada o helada temprana a aquella registrada antes del 15 de julio.

Tmin<3°C: temperatura mínima registrada en el abrigo meteorológico inferior a 3°C.

Tmin<0°C: temperatura mínima registrada en el abrigo meteorológico inferior a 0°C

FMPH: fecha media de primera helada calculada en el período 1991-2020.

Tmi5suelo<0°C: temperatura mínima a 5cm del suelo registrada fuera del abrigo meteorológico, inferior a 0°C. Los datos pertenecen solamente a la red del SMN.

x: la estación no realiza medición de temperatura mínima a 5cm del suelo.

ÚLTIMA HELADA SEPTIEMBRE 2025

Estaciones meteor	ológicas	Tmin<3	3°C	Tmin<0)°C	Tmi5suelo<0°C
Localidad	Provincia	Última helada 2025	FMUH	Última helada 2025	FMUH	Última helada 2025
Azul	Buenos Aires	24/09	14/11	24/09	05/10	24/09
Bahia Blanca	Buenos Aires	24/09	03/11	24/09	29/09	X
Balcarce	Buenos Aires	24/09	26/10	24/09	14/09	SD
Bolívar	Buenos Aires	24/09	19/10	05/09	16/09	07/09
Bordenave	Buenos Aires	28/09	07/11	24/09	05/10	SD
Castelar	Buenos Aires	07/09	30/09	06/09	25/08	SD
Coronel Suárez	Buenos Aires	24/09	23/11	24/09	18/10	24/09
Ezeiza	Buenos Aires	06/09	26/09	09/08	30/08	Χ
Hilario Ascasubi	Buenos Aires	24/09	08/11	24/09	30/09	SD
Junín	Buenos Aires	07/09	02/10	05/09	09/09	09/09
La Plata	Buenos Aires	07/09	06/10	06/09	25/08	25/09
Las Flores	Buenos Aires	05/09	20/10	-	14/09	Χ
Mar Del Plata	Buenos Aires	25/09	10/11	24/09	05/10	25/09
Nueve de Julio	Buenos Aires	06/09	21/09	-	28/08	Χ
Pehuajó	Buenos Aires	06/09	04/10	09/08	14/09	28/07
Pigüé	Buenos Aires	24/09	12/11	06/09	13/10	30/09
San Pedro	Buenos Aires	07/09	23/09	05/09	30/08	SD
Tandil	Buenos Aires	25/09	25/11	24/09	18/10	25/09
Tres Arroyos	Buenos Aires	24/09	26/10	06/09	25/09	Χ
Laboulaye	Córdoba	07/09	02/10	14/08	08/09	Χ
Manfredi	Córdoba	23/09	13/10	07/09	24/09	SD
Marcos Juárez	Córdoba	07/09	30/09	06/09	07/09	23/09
Pilar	Córdoba	06/09	17/09	09/08	29/08	07/09
Río Cuarto	Córdoba	05/09	20/09	09/08	30/08	05/09
Concepción del Uruguay	Entre Ríos	18/07	29/09	-	20/08	SD
Concordia	Entre Ríos	07/09	14/09	24/08	14/08	06/09
Gualeguaychú	Entre Ríos	22/09	21/09	09/08	22/08	Χ
Paraná	Entre Ríos	05/09	02/09	-	03/08	07/09
Anguil	La Pampa	23/09	31/10	06/09	03/10	SD
General Pico	La Pampa	06/09	11/10	05/09	12/09	22/09
Santa Rosa	La Pampa	06/09	18/10	05/09	20/09	Χ
Ceres	Santa Fe	06/09	14/09	09/08	23/08	06/09
Rafaela	Santa Fe	05/09	19/09	-	30/08	SD
Reconquista	Santa Fe	24/08	28/08	-	08/08	Χ
Rosario	Santa Fe	06/09	24/09	24/08	29/08	06/09

Referencias correspondientes a la tabla de fechas de última helada

Última helada 2025: fecha en que se registró por última vez una temperatura mínima inferior a 3°C o 0°C. Se considera última helada o helada tardía a aquella registrada después del 15 de julio.

Tmin<3°C: temperatura mínima registrada en el abrigo meteorológico inferior a 3°C.

Tmin<0°C: temperatura mínima registrada en el abrigo meteorológico inferior a 0°C

FMUH: fecha media de última helada calculada en el período 1991-2020.

Tmi5suelo<0°C: temperatura mínima a 5cm del suelo registrada fuera del abrigo meteorológico, inferior a 0°C. Los datos pertenecen solamente a la red del SMN.

x: la estación no realiza medición de temperatura mínima a 5cm del suelo.

2.5 GRADOS DÍA

SEPTIEMBRE 2025

Estaciones meteor	ológicas	Acumu	GRADOS D lados desde)	Días con
		BA	SE 5	BAS	SE 10	Tmín<2°C
Localidad	Provincia	Mes	Acum	Mes	Acum	
Azul	Buenos Aires	206.8	720.6	76.0	205.5	5
Bahia Blanca	Buenos Aires	228.7	853.5	94.6	279.7	5
Balcarce	Buenos Aires	213.2	863.9	81.4	265.0	4
Bolívar	Buenos Aires	247.4	890.8	109.2	302.5	3
Bordenave	Buenos Aires	224.6	812.3	92.4	261.0	7
Castelar	Buenos Aires	284.2	1183.7	142.4	493.6	2
Coronel Suarez	Buenos Aires	197.3	673.2	68.5	182.4	9
Ezeiza	Buenos Aires	273.6	1163.9	132.3	490.7	2
Hilario Ascasubi*	Buenos Aires	237.2	547.5	102.0	194.8	7
Junín	Buenos Aires	272.6	1096.3	131.2	430.2	3
La Plata	Buenos Aires	243.7	1016.8	106.7	368.8	3
Las Flores	Buenos Aires	259.7	1002.9	117.2	358.5	1
Mar Del Plata	Buenos Aires	188.2	795.9	62.6	220.4	4
Nueve de Julio	Buenos Aires	281.7	1120.4	137.5	440.4	1
Pehuajó	Buenos Aires	280.8	1044.7	138.1	399.1	2
Pigüé	Buenos Aires	206.9	712.7	77.7	198.7	5
San Pedro	Buenos Aires	308.8	1289.5	165.5	585.0	2
Tandil	Buenos Aires	181.2	655.2	59.6	168.0	9
Tres Arroyos	Buenos Aires	226.0	849.4	90.6	272.9	4
Laboulaye	Córdoba	303.7	1156.8	160.9	485.4	4
Manfredi	Córdoba	310.5	1204.2	166.5	535.9	6
Marcos Juárez	Córdoba	312.3	1196.1	167.9	526.5	3
Pilar	Córdoba	332.7	1334.4	185.6	621.5	0
Río Cuarto	Córdoba	325.2	1185.8	178.7	504.0	1
Concepción del Uruguay*	Entre Ríos	SD	708.0	SD	303.0	SD
Concordia	Entre Ríos	346.3	1411.7	200.4	693.6	2
Gualeguaychú	Entre Ríos	309.4	1273.6	163.4	571.3	1
Paraná	Entre Ríos	342.5	1431.7	195.6	707.7	0
Anguil	La Pampa	273.9	850.2	134.8	342.0	6
General Pico	La Pampa	293.1	1077.5	151.0	436.8	2
Santa Rosa	La Pampa	283.6	1008.7	141.4	374.8	3
Ceres	Santa Fe	395.5	1620.9	245.5	886.2	0
Rafaela*	Santa Fe	340.0	787.4	193.0	363.8	1
Reconquista	Santa Fe	389.6	1702.4	239.6	962.2	0
Rosario	Santa Fe	320.5	1298.1	175.3	607.2	2

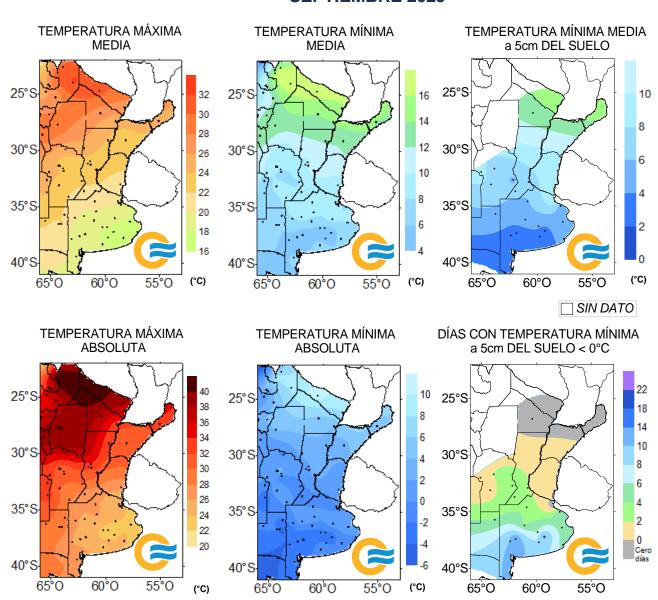
Referencias correspondientes a la tabla de grados día (grados).

MES: grados día acumulados en el mes

TMáx: temperatura máxima (°C)

SD: sin datos

^{*}Hilario Ascasubi datos faltantes en julio y agosto


^{*}Concepción del Uruguay datos faltantes en agosto y

^{*}Reconquista datos faltantes en mayo y agosto

2.6 MAPAS DE TEMPERATURA

SEPTIEMBRE 2025

3. INFORME DE PRECIPITACIÓN

En las siguientes tablas y mapas se muestran los valores de precipitación de las distintas décadas del mes de septiembre de 2025.

3.1 PRIMERA DÉCADA

Las precipitaciones fueron escasas en gran parte del país. Los desvíos positivos respecto de la media se restringieron al este de Formosa y de Chaco, el norte del Litoral y el noreste de la Patagonia; en el centro del territorio, predominaron las lluvias inferiores a la normal.

Debido a las escasas precipitaciones generalizadas, prevalecieron los secamientos de los suelos principalmente en el centro-este del país; y los humedecimientos se confinaron en el norte del Litoral y el noroeste patagónico. A pesar de esto, en la región Pampeana aún es mayor el área con buenas condiciones hídricas de los suelos.

Década 1 SEPTIEMBRE 2025

Estaciones mete	orológicas			Precipitaciór	1	
Localidad	Provincia	PD	DN	DLLu	MAX	DIA
Azul	Buenos Aires	0.3	-23.9	0	-	-
Bahia Blanca	Buenos Aires	3.6	-13.1	1	3.0	2
Balcarce	Buenos Aires	6.6	-14.4	2	3.8	1
Bolívar	Buenos Aires	0.0	-23.1	0	-	-
Bordenave	Buenos Aires	2.0	-16.0	1	2.0	2
Castelar	Buenos Aires	4.8	-24.6	1	4.6	2
Coronel Suarez	Buenos Aires	3.2	-16.9	1	3.0	2
Ezeiza	Buenos Aires	3.0	-23.3	1	3.0	2
Hilario Ascasubi	Buenos Aires	0.0	-11.5	0	-	-
Junín	Buenos Aires	0.0	-20.6	0	-	-
La Plata	Buenos Aires	8.8	-22.0	1	8.0	2
Las Flores	Buenos Aires	0.0	-26.8	0	-	-
Mar Del Plata	Buenos Aires	8.4	-14.2	2	4.0	1
Nueve de Julio	Buenos Aires	0.0	-22.7	0	-	-
Pehuajó	Buenos Aires	0.0	-16.4	0	-	-
Pigüé	Buenos Aires	5.0	-18.2	1	5.0	2
San Pedro	Buenos Aires	1.3	-20.2	1	1.3	2
Tandil	Buenos Aires	9.0	-12.4	1	9.0	1
Tres Arroyos	Buenos Aires	31.0	11.7	5	14.0	1
Laboulaye	Córdoba	0.0	-13.3	0	-	_
Manfredi	Córdoba	0.0	-10.9	0	_	_
Marcos Juárez	Córdoba	0.0	-19.1	0	-	_
Pilar	Córdoba	0.0	-9.2	0	-	-
Río Cuarto	Córdoba	0.0	-9.6	0	-	-
Concordia	Entre Ríos	25.5	-13.2	2	16.0	3
Gualeguaychú	Entre Ríos	14.2	-21.9	1	14.0	2
Paraná	Entre Ríos	2.0	-24.0	1	2.0	2
Anguil	La Pampa	0.0	-17.1	0	_	-
General Pico	La Pampa	0.0	-16.7	0	-	_
Santa Rosa	La Pampa	0.0	-14.1	0	-	-
Ceres	Santa Fe	0.0	-10.9	0	-	-
Rafaela	Santa Fe	0.0	-12.2	0	_	-
Reconquista	Santa Fe	9.7	-2.9	2	6.0	3
Rosario	Santa Fe	0.0	-18.2	0	-	-

3.2 SEGUNDA DÉCADA

Década 2 **SEPTIEMBRE 2025**

Estaciones mete	orológicas			Precipitaciór	ì	
Localidad	Provincia	PD	DN	DLLu	MAX	DIA
Azul	Buenos Aires	63.0	47.1	3	45.0	20
Bahia Blanca	Buenos Aires	33.0	21.6	3	11.0	17
Balcarce	Buenos Aires	44.6	30.1	1	43.3	20
Bolívar	Buenos Aires	90.0	74.4	4	48.0	20
Bordenave	Buenos Aires	2.0	-13.6	0	-	-
Castelar	Buenos Aires	7.2	-10.5	1	6.8	14
Coronel Suarez	Buenos Aires	73.0	64.4	3	45.0	20
Ezeiza	Buenos Aires	36.5	16.4	3	18.0	19
Hilario Ascasubi	Buenos Aires	81.0	71.2	3	45.0	17
Junín	Buenos Aires	41.5	27.5	4	17.0	14
La Plata	Buenos Aires	36.3	17.0	2	22.0	19
Las Flores	Buenos Aires	58.0	38.3	3	37.0	20
Mar Del Plata	Buenos Aires	66.0	46.6	2	61.0	20
Nueve de Julio	Buenos Aires	57.8	42.3	4	30.0	20
Pehuajó	Buenos Aires	48.2	35.0	3	33.0	20
Pigüé	Buenos Aires	65.0	53.4	3	34.0	20
San Pedro	Buenos Aires	50.2	32.9	5	25.8	20
Tandil	Buenos Aires	47.0	31.4	2	30.0	20
Tres Arroyos	Buenos Aires	82.0	69.9	2	42.0	20
Laboulaye	Córdoba	0.5	-8.9	0	-	_
Manfredi	Córdoba	4.3	-5.6	1	3.8	19
Marcos Juárez	Córdoba	11.0	2.9	1	11.0	20
Pilar	Córdoba	0.0	-7.2	0	-	-
Río Cuarto	Córdoba	0.0	-7.8	0	-	-
Concordia	Entre Ríos	49.0	26.0	4	18.0	15
Gualeguaychú	Entre Ríos	24.0	1.9	3	15.0	19
Paraná	Entre Ríos	8.7	-5.7	3	3.0	14
Anguil	La Pampa	1.3	-10.6	0	-	-
General Pico	La Pampa	45.0	35.3	3	27.0	20
Santa Rosa	La Pampa	73.0	61.8	3	28.0	18
Ceres	Santa Fe	84.5	76.8	2	64.0	19
Rafaela	Santa Fe	25.6	14.4	3	15.5	19
Reconquista	Santa Fe	93.0	80.3	2	64.0	20
Rosario	Santa Fe	25.0	12.7	3	19.0	20

Se registraron precipitaciones a partir de un sistema frontal frío que se desplazó por la región central del país y continuó su recorrido sobre las provincias del Litoral. Posteriormente, un sistema estacionario se ubicó sobre el sur de la región central, mientras que otro frente con características cálidas afectó al noreste del país. A partir de estos últimos eventos se observaron los principales desvíos positivos de lluvia hacia el final del período analizado. Los valores de precipitación más abundantes se registraron en Monte Caseros (136 mm), Paso de los Libres (111 mm), Mercedes (96 mm), Reconquista (93 mm), Ceres (84.5 mm), Bolívar (90 mm), Tres Arroyos (82 mm), Coronel Suárez (73 mm) y Santa Rosa (73 mm).

Algunas áreas muy puntuales quedaron con precipitaciones deficitarias a lo largo de la década analizada, presentando los desvíos más negativos en la provincia de Misiones, seguido del oeste de Córdoba.

Se observaron aumentos de la humedad almacenada en el suelo en la provincia de Buenos Aires, noreste de La Pampa, norte de Entre Ríos, Corrientes, centro y norte de Santa Fe, este de Chaco y este de Santiago del Estero. En contraposición, en el extremo norte, noreste y noroeste del país se evidenció un descenso del agua retenida a nivel del suelo, al igual que en la provincia de Córdoba y en el noroeste de la región patagónica. Según el modelo de balance hídrico analizado, el suelo presenta condiciones de excesos en casi toda la provincia de Buenos Aires y en las provincias de la Mesopotamia, mientras que, hacia el oeste de la región Pampeana las condiciones de humedad del perfil edáfico descienden progresivamente.

3.3 TERCERA DÉCADA

Al inicio de la década, un sistema frontal terminaba de desplazarse por el NEA y centro del país, dando lugar al predominio de circulación anticiclónica durante los días centrales del periodo. A partir del día 26, la formación de dos centros ciclónicos en el sur de la Patagonia y en el noroeste del territorio y los frentes asociados a ellos provocaron los núcleos de precipitación en la diagonal Córdoba-San Luis-Buenos Aires y en el NEA, ambos superiores a los valores normales.

Las recargas recibidas en el norte del Litoral y en el noroeste de Buenos Aires, sur de Córdoba y parte de San Luis se evidenciaron en el aumento de los almacenajes, que son excesivos en la mayor parte de estos sitios. El sudeste de Buenos Aires mantiene excesos leves, y el centro y sur del Litoral, donde se produjeron los mayores desecamientos de la humedad del suelo, se encuentran en condiciones entre regulares y óptimas, de acuerdo con el modelo analizado.

www.smn.gob.ar

X ⊙ **D**

Década 3 **SEPTIEMBRE 2025**

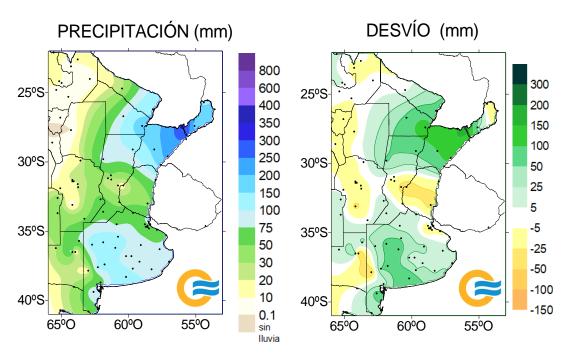
Estaciones mete	eorológicas			Precipitaciór	1	
Localidad	Provincia	PD	DN	DLLu	MAX	DIA
Azul	Buenos Aires	23.5	-4.0	2	17.0	27
Bahia Blanca	Buenos Aires	20.5	3.7	2	18.0	26
Balcarce	Buenos Aires	29.6	5.4	2	22.5	27
Bolívar	Buenos Aires	45.8	18.5	2	27.0	26
Bordenave	Buenos Aires	9.1	-12.9	2	7.3	26
Castelar	Buenos Aires	17.2	-1.5	2	14.6	26
Coronel Suarez	Buenos Aires	31.4	8.3	1	31.0	26
Ezeiza	Buenos Aires	17.0	-2.0	1	16.0	26
Hilario Ascasubi	Buenos Aires	14.0	2.3	1	13.0	26
Junín	Buenos Aires	29.0	3.3	2	23.0	26
La Plata	Buenos Aires	16.7	-4.6	2	13.0	26
Las Flores	Buenos Aires	37.0	17.8	2	24.0	27
Mar Del Plata	Buenos Aires	21.0	-0.1	3	11.0	27
Nueve de Julio	Buenos Aires	53.0	27.5	2	40.0	26
Pehuajó	Buenos Aires	68.0	41.9	2	63.0	26
Pigüé	Buenos Aires	40.0	15.2	1	40.0	26
San Pedro	Buenos Aires	17.8	2.6	1	17.5	26
Tandil	Buenos Aires	27.0	5.4	3	18.0	27
Tres Arroyos	Buenos Aires	29.0	5.5	2	18.0	26
Laboulaye	Córdoba	46.4	20.7	1	46.0	26
Manfredi	Córdoba	17.8	3.8	1	17.5	26
Marcos Juárez	Córdoba	48.0	33.0	1	48.0	26
Pilar	Córdoba	18.0	6.3	1	18.0	26
Río Cuarto	Córdoba	4.0	-13.6	1	4.0	26
Concordia	Entre Ríos	6.7	-21.2	1	6.0	26
Gualeguaychú	Entre Ríos	5.0	-15.4	1	5.0	26
Paraná	Entre Ríos	4.0	-9.7	1	4.0	26
Anguil	La Pampa	0.9	-18.8	0	-	-
General Pico	La Pampa	30.0	7.6	1	30.0	26
Santa Rosa	La Pampa	10.0	-14.3	1	10.0	26
Ceres	Santa Fe	0.0	-12.6	0	-	-
Rafaela	Santa Fe	1.8	-11.3	1	1.8	26
Reconquista	Santa Fe	0.4	-19.8	0	-	-
Rosario	Santa Fe	16.0	-1.5	1	16.0	26

Referencias correspondientes a las tablas de precipitación por década.

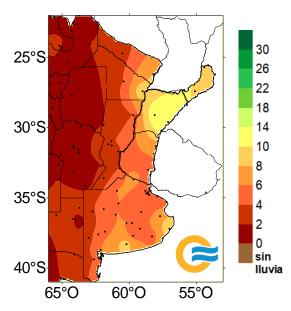
PD: precipitación (mm) total de la década

DN: desvío de la precipitación (mm) promedio 1991-2020 MAX: precipitación máxima (mm) registrada en 24 horas

Dllu: días con precipitación > 1 mm

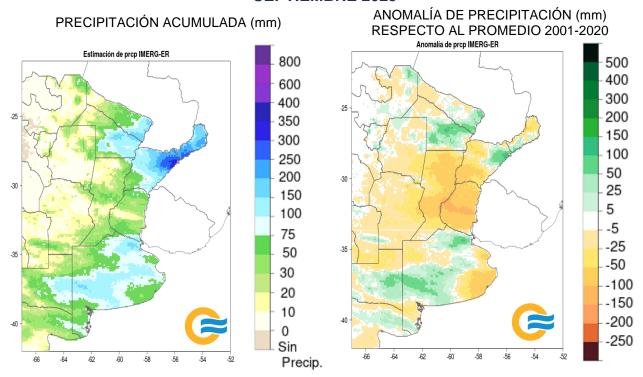

DN: desvío del promedio

DÍA: fecha en que se observó la precipitación máxima diaria



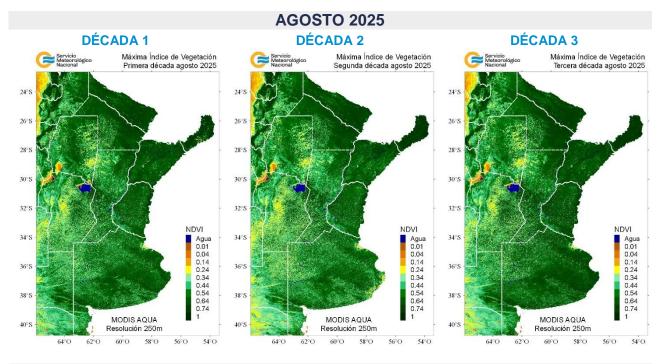
3.4 MAPAS DE PRECIPITACIÓN

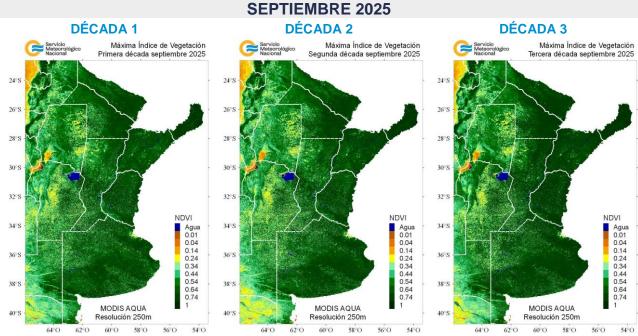
SEPTIEMBRE 2025



DÍAS CON PRECIPITACIÓN

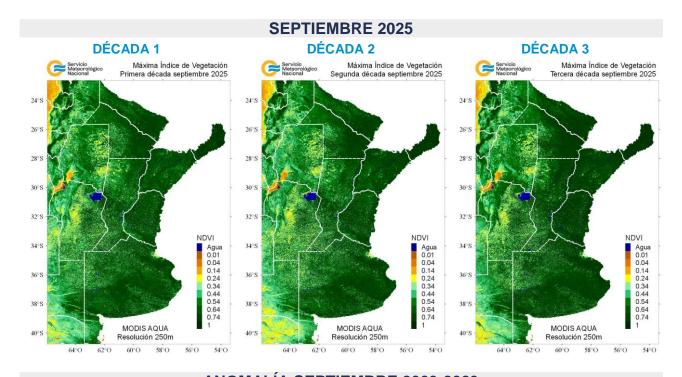
PRECIPITACIÓN ESTIMADA CON SENSORES REMOTOS - IMERG_ER **SEPTIEMBRE 2025**

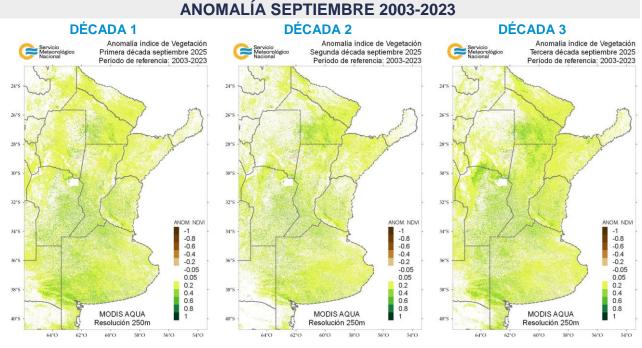



4. ÍNDICES SATELITALES

4.1. ÍNDICE NORMALIZADO DE VEGETACIÓN

A continuación se muestran los campos de índice NDVI (índice Normalizado de Vegetación) máximo para cada década de agosto y septiembre de 2025. Este índice se encuentra estrechamente relacionado con el desarrollo de la vegetación y las condiciones climáticas. En el transcurso de cada década se observa un aumento en la actividad fotosintética, esto en parte está asociado a la etapa fenológica de los cultivos, ya que los cereales de invierno se encuentran en fase reproductiva mientras que los granos de verano transitan la etapa vegetativa.

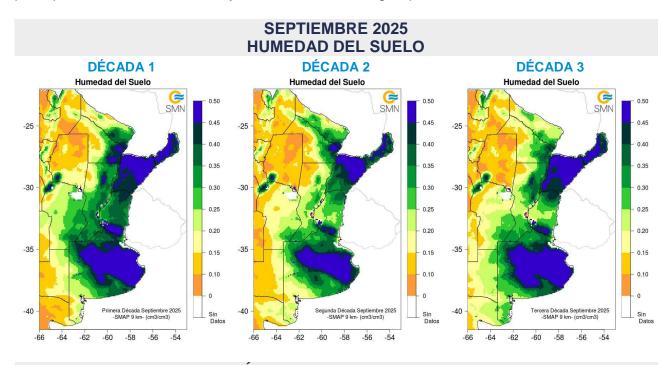


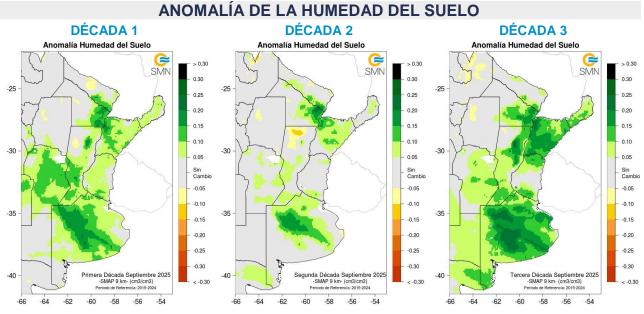

4.2. ANOMALÍA DEL ÍNDICE NORMALIZADO DE VEGETACIÓN

En los siguientes mapas se presenta los campos de índice NDVI (índice Normalizado de Vegetación) máximo para cada década de septiembre de 2025 y su anomalía respecto al promedio 2003-2023 (período de referencia). El mapa de anomalía del índice de vegetación es la resultante de la diferencia entre las décadas del mes actual finalizado y el periodo de

Los tonos marrones corresponden a un índice de vegetación menor con respecto al periodo de referencia, los tonos verdes corresponden a un índice de vegetación mayor con respecto al periodo de referencia y el blanco que se mantienen iguales o muy poca variación respecto al periodo de referencia.

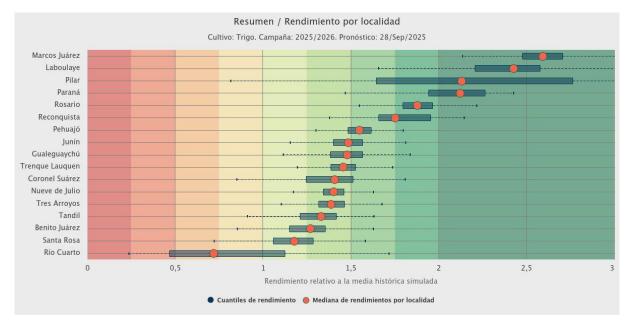
4.3. HUMEDAD DEL SUELO


Los mapas de humedad del suelo son promedios decádicos (10 días), realizado a partir de la información satelital proveniente del sensor de Humedad del Suelo Activo Pasivo (SMAP, por sus siglas en inglés). Una misión de la NASA que tiene por objetivo estimar la humedad del suelo, a una profundidad de 5 cm.


Los valores de la estimación son una representación de la humedad volumétrica del suelo (m³/m³), es decir, la relación entre el volumen de agua y el volumen total del suelo (considerando la fase sólida, líquida y gaseosa presente en el suelo).

Con el objetivo de conocer las tendencias en el comportamiento de la humedad del suelo para el periodo actual, se realiza el cálculo de las diferencias entre el periodo 2025 respecto al periodo 2015-2023, para cada década.

En la mayor parte de la región productiva de secano los suelos se encuentran con excesos de humedad debido a las precipitaciones recibidas en la segunda y tercera década principalmente, resultando mayor al contenido de agua promedio 2015-2023.





5. PRONÓSTICOS DE RENDIMIENTOS SIMULADOS - ProRindes

ProRindes es una herramienta para estimar el rendimiento de soja, maíz, trigo y cebada en varias localidades de la región Pampeana y a lo largo de toda una campaña agrícola. En este momento del año se simula el rendimiento de trigo y cebada. En este boletín se presenta el pronóstico obtenido el día 28/09/2025 (se puede ver la actualización semanal en: https://prorindes.smn.gob.ar/).

En las siguientes figuras se muestra el pronóstico de rendimiento por localidad para la cebada y el trigo en formato de box plot, relativo al valor medio histórico simulado. Ambos cultivos presentan perspectivas de rindes muy superiores a la mediana en casi todas las localidades de la región V y de la región II norte. En el resto de las regiones se predicen rendimientos hasta un 50% superior a la media de las localidades. En Río Cuarto se observa una merma de los rendimientos según las simulaciones realizadas.

www.smn.gob.ar

X 0 D

DEFINICIÓN Y ABREVIATURA DE PARÁMETROS EMPLEADOS

TEMPERATURA

Máxima media (MED): promedio de las temperaturas máximas diarias en la década considerada.

Máxima absoluta (ABS): temperatura máxima más alta registrada en la década considerada.

Día: día de ocurrencia de la temperatura máxima o mínima absoluta.

Mínima media (MED): promedio de las temperaturas mínimas en la década considerada.

Mínima absoluta (ABS): temperatura mínima más baja registrada la década considerada.

Media (MED): promedio de las temperaturas medias diarias en la década considerada. La temperatura media diaria es el resultado de la semisuma de la temperatura máxima y mínima del día.

Días con heladas: cantidad de días en que la temperatura mínima absoluta fue inferior o igual a 2°C.

Desvío (DN): diferencia (°C) entre el valor de la temperatura media actual y el valor medio de la distribución histórica.

GRADOS DIAS

Estimación de la energía que una planta tiene a su disposición cada día, que le permite su crecimiento y desarrollo.

GD: Temperatura media diaria - Temperatura base **Temperatura base:** es la temperatura por debajo de la cual la planta cesa su actividad.

PRECIPITACIONES

Precipitación total (PD): cantidad total de precipitaciones ocurridas en el período considerado. Desvío del promedio (DN): diferencia (mm) entre el valor de la precipitación registrada en la década y el valor medio de la distribución histórica, para el lapso considerado (década).

Máxima (MAX): precipitación máxima acumulada en 24 horas dentro de la década considerada.

PRECIPITACIÓN ESTIMADA IMERG ER

Precipitación estimada con información provista a partir de la constelación de satélites de la Global Precipitation Measurement (GPM) de la NASA.

Se utiliza el producto IMERG_er (Integrated MultisatellitE Retrievals for GPM_early run) el cual es generado a partir del uso del algoritmo unificado de Estados Unidos que combina información de microondas pasivas de diversos sensores a bordo de la constelación de satélites GPM de la NASA.

El objetivo del algoritmo es intercomparar, combinar e interpolar todas las estimaciones de precipitación satelitales basadas en microondas, junto con aquellas derivadas a partir de datos calibrados con microondas e infrarrojo, información de precipitación observada en superficie y estimaciones provenientes de otras misiones satelitales.

Las características básicas son: resolución espacial: 0.1° x 0.1°; resolución temporal: 30 minutos; dominio global: 90°N – 90°S; disponibilidad desde el 01 de abril de 2015.

Las anomalías de la precipitación estimada por satélite representan el desvío del valor de precipitación acumulada respecto a un valor de referencia histórico. El valor de referencia está calculado estadísticamente para el período

2001-2020. Valores positivos de anomalías representan lluvias que superan este valor de referencia.

Más información:

https://gpm.nasa.gov/data/directory

NDVI (índice de vegetación normalizado)

Servicio Meteorológico Nacional

Representa la cantidad y el vigor de la vegetación (actividad fotosintética). El NDVI está estrechamente relacionado con el tipo de vegetación y las condiciones climáticas. Los tonos marrón y verde representan la gradación de la vegetación, de escasa/débil a densa/vigorosa.

Las series temporales de NDVI, muestran la tendencia del desarrollo de la vegetación natural y de

Se obtiene a partir del cálculo de los máximos valores de una composición de 10 días, utilizando imágenes del sensor MODIS a bordo de la plataforma satelital Aqua con una resolución espacial de 250 metros.

La anomalía del índice de vegetación es la resultante de la diferencia entre las décadas del mes actual y el promedio del periodo 2003-2023 para cada década específica del mismo mes de análisis.

HUMEDAD DEL SUELO

Se obtiene del sensor de Humedad del Suelo Activo Pasivo (SMAP, por sus siglas en inglés). Una misión de la NASA que tiene por objetivo estimar la humedad del suelo, a una profundidad de 5 cm, a partir de un radiómetro de microondas en banda L (1.41 GHz).

La resolución temporal del satélite es de 3 días, por lo que se obtiene un mapa integrado para la región Argentina con dicha frecuencia, tanto para las pasadas descendentes (6 am - hora local), como las ascendentes (6 pm - hora local). De esta forma, si los datos son óptimos se consideran, para el promedio decádico, 6 imágenes para cada década (3 ascendentes y 3 descendentes). Los valores de la estimación, son una representación de la humedad volumétrica del suelo (m3/m3), es decir, la relación entre el volumen de agua y el volumen total del suelo (considerando la fase sólida, líquida y gaseosa presente en el suelo).

La anomalía de humedad del suelo es calculada como la diferencia entre la década de interés correspondiente al año 2023, respecto al promedio 2015- 2022, para cada década específica.

Más información: https://smap.jpl.nasa.gov/

PRORINDES

Es una herramienta para anticipar el rendimiento de soja, maíz, trigo y cebada a lo largo de toda una campaña agrícola y para las siguientes localidades de la región Pampeana:

Los pronósticos de rendimiento se basan en modelos computacionales que simulan el crecimiento y desarrollo de cada cultivo. Los modelos requieren datos sobre el manejo agronómico del cultivo simulado, suelos, y datos climáticos.

Los pronósticos de ProRindes se realizan para los suelos más representativos de cada zona, y para un par de manejos agronómicos típicos en cada lugar.

El pronóstico se actualiza semanalmente en: https://prorindes.smn.gob.ar/

Los valores presentados en el gráfico **BoxPlot** se calculan de la siguiente manera: los rendimientos simulados en una determinada fecha de pronóstico para cada tipo de suelo, manejo agronómico y localidad se dividen por el rendimiento histórico medio correspondiente a esa situación. Luego, se calcula el valor central (mediana) de los rendimientos relativos para el conjunto de tipos de suelos y manejos agronómicos simulados en la localidad.

Las cajas de los cuantiles de rendimiento representan la distribución de rendimientos relativos para el conjunto de tipos de suelos y manejos agronómicos simulados para cada localidad. Los extremos de cada caja corresponden a los cuantiles 25 (extremo izquierdo) y 75 (extremo derecho). Las líneas punteadas llegan a los valores de los cuantiles 5 (izquierda) y 95 (derecha). Dentro de cada localidad, se asume que cada suelo y manejo aparece con la misma frecuencia.

ANEXO: INFORME TÉCNICO SOBRE LA HERRAMIENTA PRORINDES (JULIO 2022)

FUNCIONAMIENTO Y OPERACIÓN DE LA HERRAMIENTA PRONÓSTICO DE RINDES SIMULADOS (ProRindeS) EN EL SERVICIO METEOROLÓGICO NACIONAL E INVESTIGACIONES EFECTUADAS POR EL SECTOR ACADÉMICO DEL DEPARTAMENTO DE CIENCIAS DE LA ATMÓSFERA Y LOS OCÉANOS DE LA UNIVERSIDAD DE BUENOS AIRES.

María Gabriela Marcora¹, Ferreira Lorena¹, Olga Penalba², Federico Stainoh^{2,3}, Vanesa Pántano²

- ¹ Dirección de Servicios Sectoriales. Dirección Nacional de Pronóstico y Servicios para la Sociedad. Servicio Meteorológico Nacional.
- ² Departamento de Ciencias de la Atmósfera y los Océanos. FCEyN-UBA. CONICET.
- ³ Institut für Meteorologie und Klimaforschung Department Troposphärenforschung. Alemania.

Introducción

En el contexto del constante aumento de la población mundial, existe una demanda creciente en la provisión de materias primas en la industria alimentaria. Argentina es uno de los principales países proveedores de materias primas agrícolas, no solo para el mercado local sino también en el mercado de las exportaciones, y la mayor producción de las mismas se encuentra ubicada en la Región Pampeana. Por otro lado, el Marco Mundial para los Servicios Climáticos (MMSC) promueve que los Servicios Meteorológicos Nacionales (SMN) brinden sus servicios de información meteorológica y climática y sus capacidades en investigación, modelización y predicción, para el desarrollo de herramientas en determinadas áreas de interés como la agricultura y seguridad alimentaria entre otras. En este contexto internacional de MMSC y del nacional mencionado al inicio, es que el SMN acompañó el desarrollo de la herramienta ProRindeS que permite pronosticar el rendimiento de los cultivos a lo largo de una campaña agrícola. ProRindeS (Pronóstico de Rindes Simulados) pretende anticipar el rendimiento de soja (de siembra temprana y tardía), maíz (de siembra temprana y tardía), trigo y cebada en varias localidades de la región pampeana argentina, y a lo largo de toda una campaña agrícola.

La herramienta fue desarrollada mediante una colaboración entre el SMN, la Asociación Argentina de Consorcios Regionales de Experimentación Agrícola (AACREA), la Facultad de Agronomía de la Universidad de Buenos Aires (FAUBA), y la Escuela Rosenstiel de Ciencias Marinas y Atmosféricas de la Universidad de Miami, Estados Unidos de Norteamérica (RSMAS, por sus siglas en inglés). Varios proyectos de investigación realizados en los últimos años han aportado los conceptos y herramientas que se debieron integrar para implementar el sistema ProRindeS. Los diferentes proyectos fueron financiados por el Banco Interamericano de Desarrollo (BID), el Instituto Inter-Americano para el Estudio del Cambio Global (IAI), y la Fundación Nacional de Ciencias de los Estados Unidos (NSF, por sus siglas en inglés).

ProRindeS fue originalmente desarrollado como prueba de concepto financiada por los proyectos de investigación ya mencionados. Sin embargo, a partir de la campaña gruesa 2018-2019 esta herramienta comenzó a funcionar operacionalmente, mantenida y administrada por un consorcio de tres entidades: el Servicio Meteorológico Nacional, el Ministerio de Agricultura, Ganadería y Pesca y la organización civil sin fines de lucro AACREA.

Los resultados de ProRindeS se pueden consultar en la página web https://prorindes.smn.gob.ar/. Si bien es una herramienta que está disponible para todos los usuarios, está destinada principalmente a los tomadores de decisiones del sector agrícola. La misma brindará soporte principalmente para establecer relaciones de mercado o cuestiones de logística y acopio en el sector. Las actualizaciones de los pronósticos se realizan una vez por semana y se pueden visualizar de manera inmediata en el sitio web.

Este documento presenta una primera sección con una recopilación de los aspectos técnicos, principales configuraciones, limitaciones (Rocha A. 2015; Bonhaure D. y Koda V. 2018) y el trabajo

operativo que realiza actualmente el SMN con la herramienta de ProRindeS y una segunda sección con los resultados de investigaciones producto de la vinculación entre el SMN y el grupo de investigación "Variabilidad climática de eventos extremos de precipitación. Impactos" del Departamento de Ciencias de la Atmósfera y los Océanos de la Facultad de Ciencias Exactas y Naturales de la Universidad de Buenos Aires.

Aspectos técnicos y operativos del sistema ProRindeS 1.1 Principales componentes del sistema ProrindeS

El sistema ProRindeS consta de un *módulo de simulación de cultivos, un módulo de suelo* y un *módulo de clima.*

Con respecto al **módulo de simulación de cultivos**, ProRindeS posee programas computacionales que simulan el crecimiento y desarrollo de los cultivos. Los modelos utilizados son los de la familia DSSAT (Decision Support System for Agrotechnoloty Transfer). En particular, se utilizan los modelos CERES Maize para simular maíz, trigo y cebada, y CropGro para simular soja. Ambos modelos han sido calibrados y validados en Argentina mediante múltiples comparaciones entre rindes simulados y observados. Para el conjunto de las situaciones evaluadas, el rinde medio simulado y su variabilidad no difirieron en más de 5% respecto a lo observado. Para cada situación específica (e.g. un lote) el error medio esperado es entre 15 y 20%. Se utiliza un genotipo representativo de los más usados en la zona. El genotipo se caracteriza a través de un conjunto de valores (coeficientes genéticos) que describen el desarrollo y crecimiento de la variedad o híbrido a simular.

Cada manejo agronómico supone, además, una fecha de siembra y la densidad lograda (es decir, número de plantas por metro cuadrado). La definición del manejo agronómico se completa con la fertilización nitrogenada. Para todos los cultivos se define un contenido inicial de Nitrógeno en el suelo (en la capa 0-60 cm) representativo de cada localidad y fecha de siembra. Para el maíz, además, se define una dosis de fertilización con Nitrógeno de manera de alcanzar el nivel total deseado (o sea, Nitrógeno del suelo más Nitrógeno aportado por fertilización) representativo de cada localidad y fecha de siembra.

Con respecto al **módulo de suelo**, ProRindeS tiene incorporado 2-3 suelos más comunes, de modo que los usuarios puedan seleccionar el suelo más semejante a sus propias condiciones. Para cada suelo en cada situación se define, el contenido inicial de Nitrógeno y de agua. El contenido inicial de agua se refiere a la recarga inicial de agua del perfil de suelo en relación a la capacidad total de almacenaje del suelo. Además la herramienta considera 3 niveles de recarga: bajo (20% de recarga), medio (50% de recarga) y alta (100% de recarga).

Con respecto al **módulo del clima**, ProRindeS necesita series de valores diarios para 4 variables climáticas: temperatura máxima, temperatura mínima, precipitación total y radiación solar total. Esta última es estimada a partir de datos de heliofanía. Estos datos se extraen de la base de datos del Centro Regional del Clima del Sur de América del Sur (CRC-SAS), que han pasado por pruebas estrictas de calidad y consistencia. Estas variables se miden en estaciones meteorológicas operadas por el Servicio Meteorológico Nacional (Figura 1)

Figura 1: Localidades argentinas en donde se realizan las simulaciones de ProRindeS. (https://prorindes.smn.gob.ar/)

El modelo de simulación de cultivos que usa ProRindeS necesita como insumo series diarias de las 4 variables climáticas antes mencionadas. Las series deben cubrir desde el comienzo de las simulaciones (antes de la siembra) hasta el fin de ciclo o cosecha de cada cultivo. Para lograr esto, se construyen series climáticas diarias "híbridas" que combinan dos tipos de datos: (a) datos climáticos observados durante la campaña actual hasta el momento en que se emite un pronóstico, y (b) datos climáticos históricos para las fechas que van desde el pronóstico hasta el fin del ciclo.

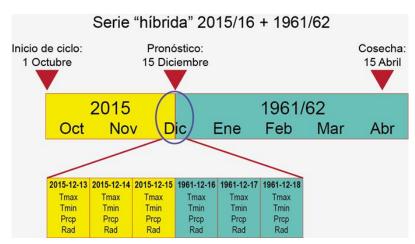


Figura 2: Construcción de una serie híbrida en base a datos observados y datos climáticos históricos.(https://prorindes.smn.gob.ar/)

En la Figura 2 se muestra un ejemplo de la construcción de una serie climática "híbrida" para un pronóstico hipotético de rendimiento realizado el 15 de diciembre de 2015. La primera parte de la serie incluye datos climáticos (temperaturas, lluvia, radiación) observados entre el 1 de octubre y el 15 de diciembre de 2015. Para poder simular rendimientos en diciembre 2015, la serie climática observada hasta el momento del pronóstico se completa con datos para 1961 (15-31 diciembre) y 1962 (1 enero – 30 abril). La transición o "empalme" entre las dos series se muestra en el detalle de la Figura 2. El uso de una sola serie climática híbrida resulta en un único valor pronosticado de rendimiento. En cambio, podemos usar varios años en el registro histórico para construir múltiples series híbridas y, por lo tanto, obtener múltiples rendimientos pronosticados. Por ejemplo, si el Servicio Meteorológico para Junín contiene datos para el período 1 de enero de 1961 al presente, se pueden construir 55 series híbridas que combinan las condiciones para 2015/16 (el comienzo de la serie) con cada uno de los 54 años históricos (para el resto de la serie).

2015	1961/62
2015	1962/63
2015	1963/64
	• • •
2015	2012/13

Figura 3: Múltiples series híbridas para una fecha de pronóstico determinada. (https://prorindes.smn.gob.ar/)

En la Figura 3 se muestra la construcción de múltiples series climáticas híbridas para un pronóstico de rendimiento emitido el 15 de diciembre de 2015. Cada una de las series combina datos observados para 2015/16 y series históricas 1961-2014 alimentan al sistema ProRindeS, lo que

resulta en 54 rendimientos pronosticados que reflejan la incertidumbre en las condiciones climáticas posteriores al 15 de diciembre de 2015.

El uso de múltiples series climáticas como entrada para ProRindeS nos permite caracterizar la incertidumbre en los rendimientos que resulta del espectro de condiciones climáticas que pueden ocurrir a partir de la fecha de pronóstico. Típicamente, la variabilidad de los valores pronosticados disminuye a lo largo del ciclo, ya que en todas las "series híbridas" que se usan de entrada al modelo hay una mayor proporción de datos para la campaña actual.

Una vez que se obtienen los rendimientos simulados, se calcula el promedio de todas las campañas. y ese valor es el rendimiento de referencia. Los valores de referencia para cada combinación de condiciones (en kilogramos por hectárea) se pueden ver seleccionando "Rendimientos de Referencia" en el menú de ProRindeS. Los rendimientos en kg por hectárea simulados con series "híbridas" para cada combinación de condiciones se dividen por el rendimiento de referencia. Los rendimientos relativos mayores que 1 indican que los rendimientos pronosticados son superiores al rendimiento de referencia: por ejemplo, un rendimiento relativo de 1.50 es 50% mayor que el rendimiento de referencia. Los rendimientos relativos menores que 1 indican resultados por debajo del rendimiento de referencia.

Los productos ProRindeS obtenidos son evolución temporal de la mediana y los cuantiles de rendimiento por cultivo, por localidad, con diferentes tipos de suelo y manejo de los mismos (dentro de la misma campaña), distribución de probabilidades en relación a la media histórica de rendimientos simulados. El sistema de pronóstico de rendimiento se complementa con otras variables de salida de interés: precipitaciones acumuladas (observadas) y cuantiles históricos, desvíos de la precipitación observada respecto de la media histórica, evapotranspiración real acumulada (ETR), evapotranspiración potencial acumulada (ETP), agua disponible para el cultivo (en función de la Capacidad de Campo), Índice de estrés hídrico (en función de la ETP y la ET real diaria).

La Figura 4 muestra la evolución temporal de los rendimientos obtenidos con la herramienta ProRindes donde se puede observar la reducción de la incertidumbre en el pronóstico de rendimiento del maíz de siembra temprana para la localidad de Pilar, a medida que va transcurriendo la campaña agrícola. Esto se debe a que, con las sucesivas corridas de ProRindeS, la serie híbrida va incorporando mayor cantidad de valores climáticos observados (la situación "actual") y menor cantidad de valores de base climatológica empleados como pronósticos. En este ejemplo se resalta que a partir de la corrida del 30 de enero la curva de evolución de los pronósticos se estabilizó, es decir que se logró simular el rinde final para este cultivo con dos meses de anticipación al fin de la campaña.

Figura 4: Evolución de los pronósticos de rendimiento para el maíz de siembra temprana en la localidad de Pilar, con una condición inicial de agua media y para los diferentes suelos tipificados en la localidad, durante la campaña agrícola 2021/2022.

El sistema ProRindeS se actualiza una vez por semana, indicando la fecha en que se inicializa la corrida, cuando los datos de clima del SMN se encuentran en la base de datos del CRC-SAS con los controles y validaciones correspondientes. Este proceso demora 48 hs aproximadamente, por lo que la fecha de inicio de las simulaciones en el "Backend" debe ser dos días previos a la fecha vigente. El maíz y la soja temprana se simulan entre los meses de septiembre y abril. Las variedades tardías de los mismos, entre los meses de diciembre y abril. El trigo y la cebada se simulan entre los meses de mayo y diciembre. Una vez realizadas las correspondientes simulaciones de los pronósticos de rendimientos los datos deben sincronizarse con el "Frontend" para poder ser visualizados en la página web que está disponible para los usuarios (https://prorindes.smn.gob.ar/). Asimismo, como servicio al usuario y en el caso de resultado destacado, se realiza una publicación en las redes sociales de ProRindeS y del SMN donde se incluyen figuras y un texto explicativo.

1.2 Validaciones y limitaciones

Según la documentación provista en https://prorindes.smn.gob.ar/ se realizaron validaciones para el esquema propuesto por la herramienta ProRindeS para los cultivos de soja y maíz a lo largo de siete campañas agrícolas (desde 2005/06 hasta 2011/12) en dos localidades de referencia: Junín (Buenos Aires) y Pilar (Córdoba). Los resultados obtenidos mostraron que la variación de los pronósticos de rendimientos está determinada principalmente por la evolución de las condiciones climáticas, en particular de la variable precipitación. En consecuencia, la incertidumbre en los pronósticos se reduce a medida que se van incorporando datos climáticos observados. Esto demuestra que los pronósticos iniciales son de utilidad relativa debido a su gran variabilidad y apartamiento respecto de los valores finales. Sin embargo, se ha demostrado que tanto para la soja como para el maíz, los pronósticos de rendimiento resultaron aceptables dentro de los dos meses previos a su cosecha (Rocha. A, 2005). Otros autores obtuvieron resultados similares para estudios realizados con trigo en India y con maíz en Brasil.

Los modelos de simulación utilizados por ProRindeS (los modelos CERES y CROPGRO en la suite DSSAT) capturan la influencia de muchos factores que influyen sobre el rendimiento simulado, pero también hay otros factores o procesos que no son capturados por estos modelos, mostrando limitaciones. La interpretación de los resultados pronosticados debe hacerse con cuidado y considerando qué factores han tenido un rol en la evolución real de los cultivos en una determinada zona. Por ejemplo, las simulaciones de rendimientos no reproducen los efectos de pestes, malezas v enfermedades (los modelos asumen que el cultivo se mantiene libre de estos factores). En años o localidades donde ha habido fuerte incidencia de estos factores, el rendimiento real probablemente sea menor que el rendimiento simulado por ProRindeS. Otro factor que los modelos no capturan es la presencia de exceso de agua (anegamiento o encharcado). Si estos excesos existen, los rendimientos reales probablemente sean inferiores a los simulados. A la inversa, los efectos beneficiosos de una napa freática accesible a las raíces de un cultivo no serán reflejados por las simulaciones si faltan lluvias. En este caso, sin embargo, los rendimientos simulados serán algo menores que los reales (si la falta de lluvia es el único factor de estrés), ya que el subsidio de agua aportado por la napa no se ve reflejado por los modelos. De la misma manera, la presencia de excesos de agua (anegamiento o encharcado) no es capturada por los modelos, por lo que nuevamente los rendimientos reales probablemente sean inferiores a los simulados. Tampoco se tienen en cuenta fenómenos climáticos extremos como las heladas.

2. Resultados de Investigación producto de Vinculación con el sector académico.

Introducción

En la última década, más del 90% del trigo argentino se cultiva en una amplia región que va de los 23° a 40° de latitud a los 57° a 67° de longitud, en donde más del 80% se cosecha en la región pampeana (Abbate et al., 2017). En dicha región, se lleva a cabo una producción en secano, por lo cual, el almacenaje de agua en el suelo se ve afectado por la escasez y exceso de precipitaciones.

Debido a lo extenso de esta región, la precipitación varía tanto estacional como espacialmente (Pántano *et al.*, 2017). La señal de los eventos El Niño-Oscilación del Sur (ENOS) en las precipitaciones mensuales en la región de estudio presentan una variabilidad regional. En términos generales las precipitaciones mensuales tienden a estar por encima (debajo) de los valores normales en los eventos El Niño (La Niña), impactando en el almacenaje de agua en el suelo (Penalba *et al.*, 2019).

Dependiendo de la etapa fenológica, el trigo es sensible a distintas condiciones hídricas y/o térmicas. Dada su importancia en el país, tanto a nivel macroeconómico como para producción individual, teniendo en cuenta que la región presenta alta probabilidad de estrés hídrico (Penalba *et al.*, 2019), y que los modelos agronómicos son una herramienta que permiten simular el crecimiento y desarrollo del cultivo, los *objetivos* de esta sección estudio son:

- a) Determinar cuáles son los períodos de escasa precipitación que impactan en el rendimiento potencial del trigo; y
 - b) Evaluar la señal de El Niño-Oscilación del Sur.

2.2 Materiales y Métodos

Con el fin de llevar a cabo este estudio se utilizaron dos bases de datos de 13 estaciones ubicadas en la región pampeana en el período 1961-2017, provistas por el Servicio Meteorológico Nacional (Figura 1):

- a. Datos diarios observados de precipitación;
- b. Rendimientos de trigo simulados por el modelo DSSAT (modelo de simulación agronómica, calibrado localmente: Rocha, 2015), asociados al genotipo más representativo de la localidad, suelo, manejo del cultivo (ciclo largo) y contenido de agua inicial al momento de la siembra (bajo: 20% capacidad de campo -CC-, medio: 50% CC, alto: 100% CC) (https://prorindes. smn.gob.ar/). Con el fin de determinar períodos sensibles asociados a las precipitaciones diarias, se trabajó con dos índices hídricos: precipitación acumulada y cantidad de días secos en distintas ventanas móviles de 15, 30 y 60 días. Para cada localidad y ventana móvil se calcularon las correlaciones de Pearson entre los índices hídricos y los rendimientos (alto y bajo contenido de agua inicial, analizados por separado), asignando el estadístico al último día de la ventana móvil. A partir de estas series temporales de correlación se identificaron, para cada localidad, los períodos sensibles para ambos índices hídricos (T de Student, significancia 95%, una cola. Wilks, 1995).

Los años El Niño y La Niña fueron identificados a partir del Índice Oceánico de El Niño (ONI) de la National Oceanic and Atmospheric Administration (http://www.cpc.ncep.noaa.gov/).

2.3. Resultados y Discusión

Inicialmente se evaluaron los períodos sensibles del rendimiento de trigo. En la Figura 5 se presentan las correlaciones entre la precipitación acumulada en ventanas móviles de 30 días y el rendimiento medio con distintos contenidos de agua inicial, para distintas localidades que sintetizan el comportamiento regional.

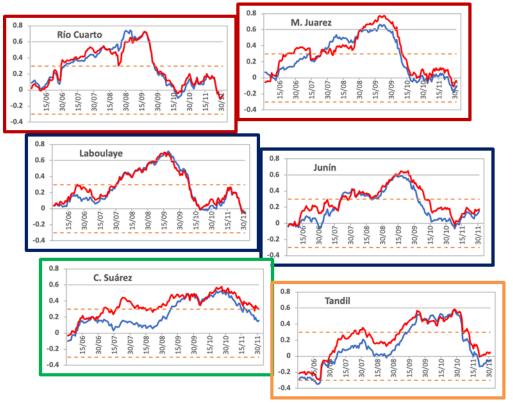
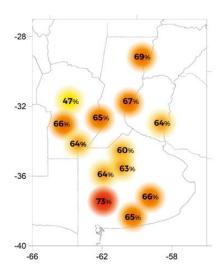



Figura 5: Series de coeficiente de correlación entre precipitación acumulada en ventanas móviles de 30 días y el rendimiento medio con bajo (línea roja) y alto (línea azul) contenido de agua inicial. Las líneas punteadas indican los umbrales de significancia.

Para las estaciones del oeste (Río Cuarto, Laboulaye) no se observan grandes diferencias entre ambos contenidos de agua, siendo el período sensible del 1 de junio al 29 de setiembre. A medida que nos desplazamos hacia el este y sudeste de la región de estudio, comienzan a observarse diferencias. Las estaciones Coronel Suárez y Tandil son las que presentan las mayores diferencias en las correlaciones en las primeras etapas fenológicas del cultivo, variando también el período sensible. En el caso particular de Coronel Suarez, se observa un período sensible desde inicios de agosto, para bajo contenido de agua inicial, correspondiente a las etapas de crecimiento, y no significativo hacia finales del ciclo, cerca de la cosecha.

La identificación de estos períodos se complementó con un estudio de sensibilidad, con el fin de determinar el período con mayor impacto en el rendimiento de trigo asociado a escasas precipitaciones. Para ello, se calculó la probabilidad de tener bajos rendimientos (menores al percentil 33) con bajas precipitaciones (menores al percentil 33). En la Figura 6 (izquierda) se indica esta máxima probabilidad utilizando las simulaciones con bajo contenido de agua inicial.

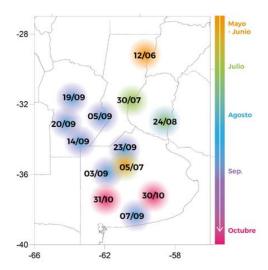


Figura 6: Máxima Probabilidad de bajos rendimientos asociados a escasas precipitaciones, en ventana de 30 días (izquierda) y fechas (indicando el final de la ventana de 30 días) en la cual estas probabilidades máximas ocurren (derecha).

Es interesante observar que las probabilidades son elevadas, mayores al 60% salvo para la estación Pilar-Córdoba. Adicionalmente, se identificaron los períodos de 30 días en los cuales estas probabilidades ocurren (Figura 6, derecha). Se puede observar que los períodos de 30 días acompañan el desfasaje norte-sur de los ciclos fenológicos.

Finalmente, se analizó la señal de los eventos ENOS en estos períodos de escasas precipitaciones asociados a bajos rendimientos y en la distribución total de los rendimientos. En la Figura 7 se presentan las probabilidades de bajos rendimientos discriminados por eventos ENOS. Las mayores diferencias se observan en las localidades de la provincia de Buenos Aires, Junín representa este comportamiento. La probabilidad de tener bajos rindes con escasas precipitaciones en ventanas de 30 días tiende a ser mayor en años La Niña. En algunos periodos, las probabilidades son mayores al 40% y en algunas localidades llegan al 60% (Marcos Juárez, Laboulaye).

Durante los primeros estadíos del ciclo fenológico del trigo se observaron elevadas probabilidades de tener bajos rindes con escasas precipitaciones. Es el caso de las localidades de Coronel Suarez y Junín, cuyas probabilidades son cercanas al 80% (Figura 7).

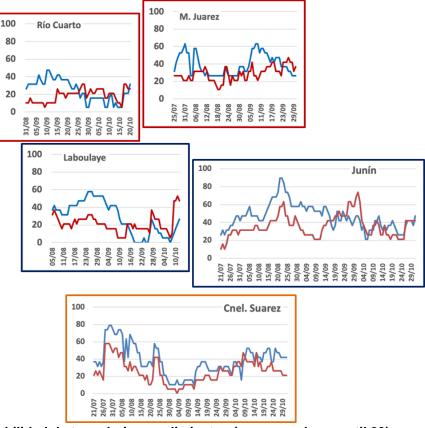


Figura 7: Probabilidad de tener bajos rendimientos (menores al percentil 33) con escasas precipitaciones en 30 días (menores al percentil 33) en eventos El Niño (curva roja); La Niña (curva azul). Utilizando simulaciones con bajo contenido de agua inicial.

Adicionalmente, se calcularon las funciones de distribución acumulada de los rendimientos con bajos contenidos de agua inicial en años El Niño y años La Niña. De la Figura 8 se puede observar que en años La Niña se observan menores rendimientos de trigo, principalmente en las localidades de la provincia de Buenos Aires. En las localidades del oeste y norte de la región de estudio no se observan diferencias significativas entre ambas funciones de distribución.

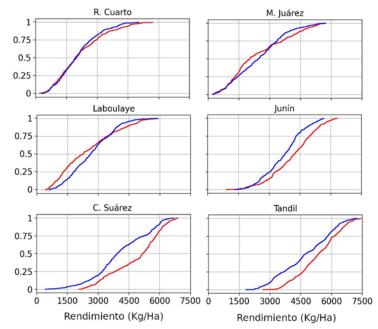


Figura 8: Función de distribución acumulada de los rendimientos con bajos contenidos de agua inicial en años El Niño (curva roja) y años La Niña (curva azul).

2.4. Conclusiones

A partir de rendimientos simulados de trigo (ciclo largo; con alto y bajo contenido de agua inicial) y dos índices hídricos: precipitación acumulada y cantidad de días secos en ventanas móviles de 30 días se identificaron períodos sensibles en los cuales la probabilidad de tener bajos rindes con escasas precipitaciones es mayor al 60%, presentando una regionalización Norte-Sur. Las localidades del oeste de la región de estudio y norte de la provincia de Buenos Aires no presentan diferencias entre alto y bajo contenido de agua inicial. En términos generales, el período sensible se encuentra entre julio y setiembre. Las localidades del centro y sur de la provincia de Buenos Aires presentan diferencias entre alto y bajo contenido de agua inicial. Si el cultivo comienza con alto contenido de agua inicial, el período sensible recién comienza a mediados de setiembre.

La señal de los eventos ENOS en las precipitaciones estacionales y mensuales en la región de estudio, presenta una variabilidad temporal y regional. En términos generales, las precipitaciones tienden a estar por debajo (encima) de los valores normales en los eventos La Niña (El Niño). Los principales resultados indican que en años La Niña la probabilidad de tener bajos rindes con escasas precipitaciones en ventanas de 30 días tiende a ser mayor que en años El Niño. En las localidades del sur de la provincia de Buenos Aires esta probabilidad llega al 80%.

El conocimiento de esta información, para una región determinada y su probabilidad asociada, contribuirán a un Sistema de Alerta Temprana (SAT) más robusto con el fin de disminuir sus impactos, en el marco del Sistema Nacional para la Generación Integral del Riesgo (SINAGIR).

2.5. Agradecimientos

Este trabajo fue realizado con apoyo de los proyectos PIP 0333, UBACyT 20020170100357BA, PICT 2018/03589 y PICT 2019/02933.

Bibliografía

Abbate P. E.; Cardós M. J.; Campaña L. E. 2017. El trigo, su difusión, impotancia como alimento y consumo. Manual de trigo. Instituto Internacional de Nutrición de Plantas, Programa Latinoamérica Cono Sur. Bonhaure. D. y Koda. V. (2018). ProRindeS documentación. Proyecto ProRindeS PY, Universidad Católica. CTA.

Pántano, V. C.; Penalba, O. C.; Spescha, L. B.; Murphy, G. M. 2017. Assessing how accumulated precipitation and long dry sequences impact the soil water storage. International Journal of Climatology 37:4316-4326.

Penalba, O.C.; Pántano V. C.; Spescha L. B.; Murphy G. M. 2019. El Niño–Southern Oscillation incidence over long dry sequences and their impact on soil water storage in Argentina. International Journal of Climatology 39: 2362-2374.

Rocha A.(2005). Pronóstico de rendimiento de los cultivos de granos en la Región Pampeana a través del uso de modelos de simulación agronómica. Cátedra de Cerealicultura. Buenos Aires, Facultad de Agronomía, Universidad de Buenos Aires.

Wilks. D. S. 1995. Statistical Methods in the Atmospheric Sciences. Academic Press. Massachusetts. Estados Unidos. 453 pp.

Dorrego 4019 (C1425GBE) Buenos Aires . Argentina Tel: (+54 11) 5167-6767 . smn@smn.gob.ar

www.smn.gob.ar

