EVALUACIÓN DE LOS MODELOS NUMÉRICOS SOBRE EL MAR ARGENTINO A PARTIR DE INFORMACIÓN SATELITAL DE VIENTO Y OLAS EN TIEMPO CERCANO AL REAL

Matias De Oto¹, Yanina García Skabar^{1,2,3}, Paula Etala¹

¹Servicio Meteorológico Nacional (SMN)

²Consejo Nacional de Investigaciones Científicas y Técnicas de Argentina (CONICET)

³Instituto Franco Argentino sobre Estudios del Clima y sus Impactos IRL3351-IFAECI (CNRS/IRD/UBA/CONICET)

OBJETIVO

En este trabajo se plantean dos objetivos:

- Identificar la información satelital disponible de viento y olas en tiempo cercano al real sobre el Mar Argentino y el océano adyacente
- Utilizar la información satelital para realizar una evaluación de los pronósticos numéricos que se procesan en el SMN y brindar una comparación con otros modelos numéricos globales.

DATOS

- → Región de estudio: Mar Argentino y gran parte del Océano Atlántico adyacente. Periodo de estudio: año 2021 (con algunos gaps)
- → Información satelital y pronósticos determinísticos de intensidad de viento (WS) y altura significativa de la ola (SWH). Se validó el plazo de pronóstico de 12 horas de los pronósticos inicializados a las 00Z
- → Las observaciones satelitales provienen de los satélites Ascat-B y C, CYGNSS, Jason-3, Saral, Sentinel-6 y SMAP (ver Tabla I)
- Productos de nivel L2 en tiempo cercano al real (del inglés, NRT), con excepción de CYGNSS en tiempo crítico breve (del inglés, STC) \rightarrow
- → Los pronósticos de WS se extrajeron del WRF-SMN (Dillon y otros, 2020) y de los modelos globales GFS y ECMWF ejecutados por NCEP y ECMWF, respectivamente (ver Tabla I)

Sensor (Nombre/Tipo)	Satélite	Tipo de órbita	Catálogo	Variable	Res. espacial aprox. de la celda (km²)
Poseidon-3B / Altímetro RAR	Jason-3	Polar no heliosíncrona	JASON_3_L2_OST_OGDR_GPS	WS, SWH	7 x~10
Poseidón-4 / Altímetro SAR	Sentinel-6	Polar no heliosíncrona	JASON_CS_S6A_L2_ALT_LR_RED_OST_NRT_F	WS, SWH	7 x~10
AltiKa / Altímetro RAR	Saral	Polar heliosíncrona	ALTIKA_SARAL_L2_OST_XOGDR	WS, SWH	7 x ~10
DDMI / Reflectómetro	Cygnss	Tropical no heliosíncrona	CYGNSS_L2_V3.1	WS	25 x 25
Ascat-B / Dispersómetro	Metop-B	Polar heliosíncrona	ASCATB-L2-Coastal	WS	25 x 25
Ascat-C / Dispersómetro	Metop-C	Polar heliosíncrona	ASCATC-L2-Coastal	WS	25 x 25
SMAP / Radiómetro	SMAP	Polar heliosíncrona	SMAP_JPL_L2B_SSS_CAP_V5	WS	60 x 25

CONICET

sobre estudios de

Clima y sus Impactos

→ Los pronósticos de SWH se extrajeron del Austral-WW3 (Etala y otros, 2014) y los modelos globales GFS-WW3 y ECMWF-WAM.

METODOLOGÍA

- → Medición satelital instantánea
- \rightarrow Redondeo a hora más próxima
- \rightarrow Elección del plazo de pronóstico a verificar
- \rightarrow Se toma ventana de verificación de ±2 h
- → Match-ups: par pronóstico-satélite
- → Interpolación a la traza satelital: método del nodo más cercano
- \rightarrow Flags de presencia continental, de hielo y de lluvia
- \rightarrow Dependiendo el caso, se generan nuevos flags (i.e. Saral)
- \rightarrow Cómputo de estadísticos:

$$Bias = \bar{s} - \bar{o}$$

$$RMSD = \sqrt{\frac{1}{N}\sum_{n=1}^{N} \left[\left(s_n - \bar{s} \right) - \left(o_n - \bar{o} \right) \right]^2}$$

$$NRMSE = \frac{1}{\max(o) - \min(o)} \sqrt{\frac{1}{N}\sum_{n=1}^{N} \left(s_n - o_n \right)^2}$$

$$Scatter Index = \frac{RMSD}{\bar{o}}$$

en donde S_n es la variable del pronóstico y O_n la observación satelital con s y o sus respectivas medias

Fuente: Physical Oceanography Distributed Active Archive Center (PODAAC, https://podaac.jpl.nasa.gov/)

Variable	Modelo Numérico	Resolución espacial
Intensidad de viento	WRF	Retícula Regular 4 km
Altura significativa de la ola	Austral-WW3	Retícula Regular 0.2°
Intensidad de viento, Altura significativa de la ola	GFS-WW3 (GSOUTH)	Retícula Regular 0.25°
Intensidad de viento, Altura significativa de la ola	ECMWF-WAM	Gauss ~0.08° - Reducida 0.125°

GFS: https://rda.ucar.edu/data/ds084.4/; https://noaa-gfs-bdp-pds.s3.amazonaws.com/index.html ECMWF: https://www.ecmwf.int/en/forecasts/dataset/operational-archive

RESULTADOS

Scatter Index =

Bias (azul) y RMSD (negro) de Intensidad de Viento de WRF

Cociente (%) entre los match-ups y la totalidad de observaciones satelitales diarias en función de la ventana de verificación alrededor del plazo de 12 hs para Austral-WWIII. Nota: la flecha indica ventana de ± 2 h

	Bias	RMSD	NRMSD	SI	Nobs	Inv. flags
WRF	-0.18 ms ⁻¹	1.65 ms⁻¹	6.13 %	-	1.2e ⁷	0.56 %
GFS	0.08 ms⁻¹	1.62 ms ⁻¹	6.00 %	-	1.5e ⁷	0.51 %
ECMWF	-0.12 ms ⁻¹	1.39 ms ⁻¹	5.17 %	-	1.5e ⁷	0.52 %
WW3	-0.06 m	0.49 m	-	19.59 %	1.7e ⁵	0.78 %
GFS-WW3	-0.14 m	0.44 m	-	17.36 %	1.8e ⁵	0.56 %
ECMWF-WAM	-0.07 m	0.5 m	-	19.67 %	2.2e ⁵	3.95 %

Tabla II. Comparación de estadísticos entre los distintos modelos numéricos.

CONCLUSIONES

Hay una mayor abundancia de observaciones provenientes de sensores de banda que de nadir (*Fig. 1*). Además, existe un condicionamiento horario para realizar verificaciones/comparaciones. La ventana de verificación de ± 2 h resulta en un análisis más robusto, aumentando los match-ups un 20% (*Fig. 4*).

El bias de intensidad de viento (*Fig. 6-Izq.*) es positivo (mod>sat) sobre la Plataforma y la Confluencia Brasil-Malvinas, y negativo, muy próximo a la costa y hacia el océano abierto. La altura significativa de la ola (Fig. 6-Der.) presenta un patrón más difuso, con valores positivos al NE de P. Drake y la Plataforma Patagónica; en el resto de la región predominan valores negativos y muy negativos al sur de T. del Fuego y litoral bonaerense. El desempeño espacial en la variabilidad temporal de intensidad de viento y altura significativa de la ola (*no se muestra*) disminuye hacia la costa. Considerando la variabilidad temporal, ECMWF presenta mejor correspondencia con con la intensidad de viento satelital, como así GFS-WW3 con la altura significativa de la ola (**Tabla II**).

Todavía no hay una explicación en la región, sobre cuál es el motivo de los cambios temporales abruptos en los estadísticos (Fig. 5). El número de flags inválidos aumenta hacia la costa (Fig. 3), no obstante poco se sabe realmente si las observaciones satelitales son las causantes del marcado deterioro de los estadísticos en dicha región. Finalmente, se debe considerar los beneficios que pueden obtenerse a partir del notable aumento del número de observaciones satelitales en el sur de la región (Fig. 2). The share the

TRABAJO A FUTURO

- \rightarrow ¿Cuán confiable es la observación costera (flags inválidos)?
- \rightarrow En la evolución temporal (regional) de los estadísticos ¿A que sé deben los cambios abruptos en el desempeño? ¿Estaremos ante la presencia de casos extremos?
- \rightarrow Incorporar mayor información satelital
- \rightarrow Comenzar a explorar la altura del nivel del mar (ssha) en NRT.

AGRADECIMIENTOS

IFS.

Gracias al SHN por proveer información del modelo de olas Austral-WW3, también al repositorio activo PODAAC por proveer los datos satelitales y al ECMWF que habilitó de forma no arancelada la información del modelo

