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Abstract

Storms are one of nature's most dangerous phenomena; therefore, knowing

their spatial distribution and evolution over time is of great interest for the pro-

tection of society, as well as for climate change adaptation strategies. The mea-

surement of Thunderstorm days (Td) was one of the first tools used to monitor

storms. The advent of automatic detection networks on the surface has allowed

us to advance in the understanding and characterization of the electrical activ-

ity in the atmosphere, locating in real-time electrical discharges and providing

information over previously unrecorded regions. This work focuses on the

integration of human observations at conventional meteorological stations and

the data provided by the WWLLN surface discharge detection network in

Argentina. The calibration methodology applied determined a mean human

thunderstorm detection radius of 21 km which allowed the elaboration of iso-

keraunic maps for the period 2008–2017 for the region of interest. The spatial

distribution of storms yielded the highest values of Td in the Argentine North-

west region with values above 100 Td�year−1 followed by a relative maximum

in the Argentine Northeast with 80 Td�year−1 and the Sierras de C�ordoba with

50 Td�year−1.
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1 | INTRODUCTION

Thunderstorms are undoubtedly one of nature's most
amazing meteorological phenomena. The majestic cumu-
lonimbus and the spectacle of light and sound offered by
electrical activity (lightning and thunder) have attracted
human attention since ancient times. However, thunder-
storms are dangerous and damaging meteorological
events. In the mid-latitudes, they are among the main
causes of weather-related economic losses and human
deaths (Holle et al., 2000; Sasse and Hauf, 2003; Larja-
vaara et al., 2005; Mäkelä et al., 2014).

The study of thunderstorms has always presented a
difficult challenge due to their large temporal and spa-
tial variability. Initially, human observations from
observation stations were the only source of informa-
tion for climatological studies. Towards the end of the
20th century, with the advent of lightning detection
networks, that allowed real-time estimation of thun-
derstorm location with increasing accuracy, it was pos-
sible to advance in the knowledge of the temporal and
spatial variability of storms, which up to that moment
were biased by several factors (orography, spatial inho-
mogeneity, relocation of meteorological stations,
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population growth, location of nearby airports, among
others).

The main climatological variable related to thunder-
storm activity is the so-called thunderstorm day (Td).
This standard meteorological unit was first defined by
the International Meteorological Committee in Vienna in
1873 as a calendar day where thunder is heard at least
once, without discriminating whether the discharge is
cloud-to-cloud or cloud-to-ground and regardless of the
intensity of the thunderstorm or the occurrence of precip-
itation. Any exceptions to this definition were those days
when lightning was observed but no thunder was heard.
It is important to note that this definition is strongly
dependent on the possibility of hearing thunder.
Although Fleagle (1949) in his publication “The Audibil-
ity of Thunder” concluded that thunder originating 4 km
above the surface on the Earth, can be heard within a
radius of approximately 25 km under certain meteorolog-
ical conditions; in more recent publications, different
authors found observation radius ranging between
15 and 25 km (Rakov and Uman, 2007; Mäkelä
et al., 2014; Czernecki et al., 2016; Montana et al., 2021).

Given the relevance of the study of thunderstorm
activity, Td was introduced as a new Essential Climate
Variable in the framework of the GCOS-2016 Implemen-
tation Plan (WMO GCOS, 2019). To follow up on this
action, the Atmospheric Observations Panel for Climate
(AOPC) agreed during AOPC-22 (Exeter, UK, March
2017) to create a dedicated Task-Team on Lightning
Observations for Climate Applications (“Task-Team on
Lightning Observations for Climate Applications”—
TTLOCA).

The first international reference of thunderstorm days
in Argentina is in Brooks (1925), where the first study on
THE DISTRIBUTION OF THUNDERSTORMS OVER
THE GLOBE can be read. The data shown for Argentina
were compiled by Davis in his study of the Climate of
Argentina in 1902, which shows the long tradition of the
country in the study of Td. Later, on September 9, 1952,
during the Executive Committee meeting of the World
Meteorological Organization (WMO) agreed to prepare
global Td tables and maps. Thus, in 1953, Td data were
collected from 3,840 meteorological stations in 190 coun-
tries around the world, and the document “Distribution
of Thunderstorms Days Part I Tables” was prepared. For
this document, Argentina shared data from 42 weather
stations, as it can be seen in Figure 1. Three years later,
in 1956, the WMO published the first global map of Td as
part of the document “World Distribution of Thunder-
storms Days Part II.” These maps coined the term Isoker-
aunic Maps. The isokeraunic maps show the regions with
an equal number of thunderstorm days for a given time
period.

In Argentina, the first isokeraunic maps were elabo-
rated from human observations made by observers of the
National Meteorological Service (NMS). Nowadays
decadal isokeraunic maps are available from 1960 to 1989
compiled by Hordij et al. (1996) and continued by Bordon
et al. (2009) who re-analysed the decades 1960–1970,
1971–1980, 1981–1990 and incorporated the decade
1991–2000. Those authors conclude that a Td increase is
evident in the Patagonian coast and the Paraguay basin.
More recently, Arcioni (2006) published in the April 2006
issue of the journal Ingeniería Eléctrica isokeraunic maps
for the period 1971–1980 based on the climatological sta-
tistics of the NMS. However, given the heterogeneous
and insufficient spatial coverage of Argentina's surface
synoptic network, maps based on these data alone may
not be fully representative of thunderstorm activity
(Rasmussen et al., 2014; Albrecht et al., 2016).

In order to elaborate an equivalent map based on data
from surface-based lightning detection networks, a Td
should be defined as those days in which the network
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FIGURE 1 Location of the synoptic surface stations used in

the study (blue-filled circles) and stations used in the WMO 1956

report (red dots). Different geographical regions also are shown

(NO: Northwestern Argentina; NE: Northeastern Argentina; CE:

Central Argentina; CU: Western Argentina - Cuyo region; and PA:

Patagonia Argentina). Terrain elevation (in meters; grey scale) is

from the shuttle radar topography mission
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detects at least one lightning stroke within a given area
centred around each station. Several studies have been
carried out to find an approximate radius of human
detection of thunderstorms using different methods, with
the objective of joining the long-term time series and also
to find more modern methodologies for its determina-
tion. The results show that there is an important depen-
dence on several factors such as orography or time of day
in the obtained radius of human detection, with values in
the range of approximately 10–26 km (Reeve and
Toumi, 1999; Mäkelä et al., 2014; Huryn et al., 2015;
Czernecki et al., 2016; Núñez Mora et al., 2019).

The main objective of this study is to analyse the rela-
tionship between human thunderstorm observations
(SYNOP reports) and lightning detection data from the
WWLLN network in Argentina for the period 2008–2017.
We attempt to define the average human thunderstorm
detection range and evaluate thunderstorm measure-
ments over particular weather stations. In addition, the
isokeraunic maps obtained will allow us to advance in
the knowledge of the climate in Argentina and thus
respond to the requirements of TTLOCA in terms of com-
plementing human observations with automatic detec-
tion systems.

2 | DATA

2.1 | Synoptic surface network

SYNOP (surface synoptic observations) messages are a
numerical code (called FM-12 by the WMO); used to
report meteorological observations made by surface
weather stations. The current surface network of the
NMS of Argentina has 125 stations that perform observa-
tions with different work plans prioritizing measure-
ments at 0000, 0600, 1200, and 1800 UTC, known as
synoptic hours. In the present work, data from stations
that made uninterrupted 24-hr observations during the
period 2008–2017 were used (32 stations; Figure 1 and
Table 2). Figure 1 also shows the stations presented in
the WMO report, in order to provide a historical context
regarding the change in the spatial distribution of the sta-
tions since the beginning of the 20th century. The differ-
ence observed in the location of the blue and red dots in
Figure 1 is due to some of the following reasons:

1. Stations used for the elaboration of the 1956 climatol-
ogy ceased to function before 2007.

2. Stations used for the elaboration of the 1956 climatol-
ogy were replaced by nearby stations which did not
provide uninterrupted 24-hr observations in the
period of interest.

3. Similarly, stations used for the elaboration of the 1956
climatology that continue to operate but did not pro-
vided uninterrupted 24-hr observations in the period
of interest.

4. Stations used for the elaboration of the 1956 climatol-
ogy that closed and were replaced by nearby stations.

Due to Argentina's varied orography and geographical
extension, a large spatial and temporal variability charac-
terizes thunderstorms in Argentina. For this reason, in
the present study, the Argentine territory was divided
into five regions: Northwest Argentina (NW), Northeast
Argentina (NE), Central Argentina (CE), Cuyo (CU) and
Patagonia (PA) in order to analyse the particularities pre-
sent in each one of them (see Section 4.1 below). These
regions were defined based on previous studies of deep
moist convection (DMC) documented by several authors
using satellite data. For more details see Romatschke and
Houze (2010), Rasmussen et al. (2011), and Rasmussen
et al. (2014).

In order to have complete records of Td at each sta-
tion, we first took into account those days in which the
observer reported any of the following present weather
codes (hereafter TPres) in the SYNOP message: 13 (light-
ning without hearing thunder), 17 (Thunderstorm, but
no precipitation at the time of observation), 29 (Thunder-
storm [with or without precipitation]), 91 (Slight rain at
the time of observation), 92 (Moderate or heavy rain at
time of observation), 93 (Slight snow, or rain and snow
mixed or hail at time of observation), 94 (Moderate or
heavy snow, or rain and snow mixed or hail at time of
observation), 95 (Thunderstorm, slight or moderate,
without hail), 96 (Thunderstorm, slight or moderate, with
hail), 97 (Thunderstorm, heavy, without hail but with
rain and/or snow at the time of observation), 98 (Thun-
derstorm combined with dust storm or sandstorm at time
of observation), and 99 (Thunderstorm, heavy, with hail
at time of observation). In the addition, we take into
account the information from the Daily Table (hereafter,
TDiar) of the “Hydrometeors and Phenomena” was taken
into account in which the observer at the station only
notes if at any time during the day they hear any thun-
der. Both sources of information were subject to rigorous
quality control to eliminate erroneous data, evaluate the
limitations of the observations, and to prepare an
improved Td database. This was carried out by compar-
ing the data from TPres and those provided by TDiar. Dif-
ferent cases emerged from this comparison:

1. Days with thunderstorms were reported in both TPres
and TDiar

2. Days with thunderstorms were reported in TPres but
not in TDiar

9074 BERTONE ET AL.
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3. Days with thunderstorms reported in TDiar with
TPres referring to the hour preceding 0000 hr.

4. Days with thunderstorms were reported in TDiar but
not in TPres

5. Days with thunderstorms reported in TDiar with
TPres 13 only.

6. Days with TPres 13 and no report in TDiar.

Considering these six cases, it was decided to consider
cases 1 and 2 as storm days, and discard case 4 situations
because they did not register TPres referring to storms in
the SYNOP message. For case 3 situations, since the
observation is made at 0000 LST (0300 UTC) but the phe-
nomenon corresponds to the preceding hour (i.e., the pre-
vious calendar day), the previous day was considered a
storm day, and the day of the TDiar measurement was
discarded. For example, in a storm that occurs between
2330 and 2355 LST (0230 and 0255 UTC, respectively) the
moment, the phenomenon is recorded, that is, at 0000
LST of the following day, the observer reports the phe-
nomenon with a present time of the preceding hour and
in the TDiar of the present day, being that the event
occurred the previous day. Case 5 records, which take
into account cases where the observer sees lightning but
does not hear thunder, were discarded. An example of
this case could be given in those stations with a wide field
of view in which it is possible to observe storm clouds
and see lightning in the distance but not hear thunder.
Such cases would add inconsistency between the two
datasets because de definition if only lightning is
observed, it is incorrect to consider it as a Td. On the con-
trary, case 6 situations, do not represent any inconsis-
tency between the two datasets because if only lightning
is seen (TPres 13) and thunder not heard it should not be
reported as a thunderstorm day in the TDiar, therefore it
was discarded as Td.

In conclusion, cases 1, 2, and the day before case
3 were considered thunderstorm days, and make up the
database used in the elaboration of the isokeraunic maps.

2.2 | WWLLN network

The World Wide Lightning Location Network (WWLLN,
http://wwlln.net) is a worldwide network that became
operational in August 2004 and has more than 70 stations
over different continents. It detects very low-frequency
radio waves (spherics) emitted by discharges (Hutchins
et al., 2012; Virts et al., 2013). This global network has
shown the importance of having a scientific network that
covers the entire globe, reaching places where conven-
tional networks do not have coverage; allowing the study
of remote locations (Garreaud et al., 2014). This network

allows the detection of discharges with an overall accu-
racy of 10 km and <30 μs (Rodger et al., 2014). The over-
all efficiency of the WWLLN network in detecting
discharges ranges from 5 to 10%, although recent studies
estimate that the overall efficiency has reached values
around 15% in 2017 (Koronczay et al., 2019). The net-
work calculates daily Relative Detection Efficiency, and
as a result of the coverage of stations around the globe,
the efficiency in our region of study as calculated in the
last few years is between 90 and 100%.

3 | METHODOLOGY

A Td is defined by SYNOP data if at least once a day, the
meteorological observer hears thunder at the weather sta-
tion, and by WWLLN if at least one stroke is detected by
the network inside different detection ranges (from 10 to
30 km, with steps of 1 km) centred at the 32 weather sta-
tions from the SMN operational 24-hr surface network
for the period 2008–2017.

To obtain the range in which humans detect thunder-
storms, the methodology proposed by Czernecki et al.
(2016) was applied. They propose two methods that com-
pare daily Td values from SYNOP messages with those
calculated from an automatic detection network (here
WWLLN) based on contingency tables.

• TS method: compare the SYNOP messages with Td
values as calculated using the automatic detection net-
work in an area centred on the meteorological station
of interest and considering different radii around it, so
that the maximum of the curve obtained (Figure 2)
refers to the observation distance that optimizes the Td
values of both databases. In addition, the TS value
itself estimates the quality of human observations.

• Delta method: the Td values reported in the SYNOP
messages that were not recorded in the automatic
detection network (C in Table 1) are subtracted from
the Td values that were reported in the detection net-
work that were not reported in the SYNOP messages
(B in Table 1). In this way, the point at which the
curve takes the value zero (Figure 2) determines the
radius with the best overlap of Td values from both
sources of information.

To find the TS and Delta values, a 2 × 2 contingency
table (Table 1) is prepared for each detection range and
for each of the weather stations, which are calculated as
follows:

TS=
A

A+B+C
:

BERTONE ET AL. 9075
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Delta=C−B:

The above methodology was applied for different radii
varying between 15 and 25 km every 1 km and then, to
make a more general characterization, every 5 km for dis-
tances from 10 to 15 and 25 to 30 km. To compare the Td
results obtained for the two datasets, the Student's test
for two independent samples was used. The purpose is to
test the null hypothesis that states that the difference
between the means obtained for two samples zero, that is
to say,

Td WWLLNð Þ−Td SYNOPð Þ=0:

Finally, we use the observational distance values
obtained from the TS and Delta methods to calculate, the
average annual number of thunderstorm days using
WWLLN data heard by humans. To achieve this, we use
a uniform grid of 0.05� × 0.05� (�5 × 5 km) bins and at

each bin, we take into account flashes within the radius
of the obtained threshold value (the average of TS and
Delta methods) from the centre of the bin, for the whole
10-year dataset of interest. The seasonal average maps
(Figure 6) are calculated in the same way. All calcula-
tions mentioned in this section were performed with
open-source software in Python software.

4 | RESULTS

4.1 | Human observation range of
detection

The TS and Delta curves averaged for the 32 stations are
presented in Figure 2. The results show a range of detec-
tion of 22 km for TS Method while the Delta method
shows a range of detection of 20 km. The mean value of
the two methods is 21 km which will be used later in the
isokeraunic maps.

These results confirm the estimates of Fleagle (1949)
that thunder generated at an altitude of 4 km is rarely
heard beyond 25 km, and if generated at lower altitudes,
the thunder will be heard within 25 km. Studies of thun-
der audibility suggest that thunder is heard at distances
between 8 and 19 km (Changnon, 1989). Previous work
carried out mainly in Europe has found values between
15 and 20 km in southern Germany (Finke and
Hauf, 1996), 11.3 km in the Nordic countries (Mäkelä
et al., 2014), 17.5 km in Poland (Czernecki et al., 2016),
and 10.1 km in Península Ibérica (Núñez Mora
et al., 2019).

FIGURE 2 (a) TS curve computed as a relationship between lightning detection network data and SYNOP daily thunderstorm reports

for certain observational detection range thresholds (radius) within the meteorological station. The highest TS value denotes the threshold

with the best observational performance. (b) Delta curve computed as the difference between the number of thunderstorm days derived from

the lightning detection network and SYNOP reports for certain observational detection range thresholds (radius) from the meteorological

stations. The zero point denotes the threshold with the best observational performance. In both methods, the curves represent the average of

the 32 meteorological stations of interest, including data from the period 2008 to 2017

TABLE 1 Number of days with and without storms for a

station obtained by SYNOP messages and by a detection network

for a particular radius

Thunderstorm
reported in
SYNOP report

Lightning flash detected by WWLLN
network

Yes No

Yes A B

No C D

9076 BERTONE ET AL.
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When comparing the mean annual number of storm
days obtained from WWLLN data within a 21 km radius
with the mean annual number of storm days derived
from SYNOP reports (Table 2), the resulting mean annual
value with SYNOP data (WWLLN) is 45.8 (45) days with
a 5.8-day mean. If we assume that the results obtained
with the WWLLN network represent the true distribution
of storm days in Argentina, the resulting percentage error
is 13%. This represents the error in the number of annual
storm days when only SYNOP data are considered. As
expected, this error depends on the time of the year, with
a maximum value in spring (22.7%) and a minimum
value in autumn (12.4%). During summer, the error
amounts to 15% and during winter 19.7%. The scatterplot
between the number of annual mean Td from SYNOP
observations and WWLLN network data (Figure 3) shows
a correlation coefficient of 0.9652.

Although the annual mean values considering all sta-
tions are similar, when the differences per year are ana-
lysed, they vary between the different stations as shown
in Figure 4.

In order to quantify the differences between WWLLN
and SYNOP at each of the stations throughout the years
of study, the Student's test was applied. The results
obtained indicate that out of the 32 stations analysed, in
28 of them the mean differences are not significant at
95%. They are however, significant at Bariloche Aero,
Mendoza Observatory, Rio Gallegos Aero and Villa Reyn-
olds Aero, as indicated with a “(*)” in the titles of
Figure 4.

When analysing the year-to-year differences in the
stations, it is interesting to mention that in most of the
stations, between 2008 and 2014, WWLLN underesti-
mated Td. This is consistent with Kaplan and Hong-Kiu
Lau (2021), where they point out that in 2014 the
WWLLN detection efficiency reached its maximum.

4.2 | Annual isokeraunic map

As mentioned above, Argentina presents a large temporal
and spatial variability of thunderstorms, as the spatial
distribution of annual thunderstorm days (Figure 5) in
different regions of Argentina (Figure 1) will be analysed
in order to highlight their individual particularities.

4.2.1 | Northwest region (NO)

This area, which is characterized by a very heterogeneous
topography and has mountain peaks of more than
6,000 m above sea level, records the highest values of
Td in the whole country, reaching 100 Td�year−1.T
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In addition, a very marked gradient can be observed,
especially over the province of Jujuy, with a north–south
orientation.

This local maximum respond to the interaction
between the Chaco Low and the South American Low-
Level Jet (SALLJ) that favour the transport of warm and
humid air towards subtropical latitudes, providing
favourable conditions for the generation of DMC (Seluchi
and Marengo, 2000; Saulo et al., 2004; Ferreira, 2008).

Vidal (2014) also shows this region as one of the most
favourable areas in the country for the development of
mesoscale convective systems (MCS). According to their
study, MCSs in this region are small, stationary and
develop in phase with radiative heating in an environment
characterized by a high-level anticyclone associated with
the Bolivian High, a weak stationary frontal zone, and a
northerly flow at low levels with local circulations associ-
ated with the Andes mountains. More recently, Ramezani
et al. (2019) also found that solar heating and high temper-
atures trigger DMC and extreme rainfall in this region.

FIGURE 3 Scatterplot of the annual mean number of

thunderstorm days from SYNOP versus WWLLN network data for

a detection range of 21 km. The red line represents the linear

regression model

FIGURE 4 Annual differences between the number of thunderstorm days (Td) obtained from WWLLN data within a 21 km radius and

the annual number derived from SYNOP reports
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4.2.2 | Northeast region (NE)

In this area, the annual isokeraunic map shows an
increase in Td towards the northeast that reaches values
greater than 80 Td�year−1 over Misiones. Based on satel-
lite observations, Albrecht et al. (2016) identify this
region as one of the regions with the highest density of
electrical activity in the world, while Bang and Cecil
(2019) found the most frequent occurrence of severe
storms with hail diameters of 2.5 cm or more, especially

in spring and early summer. Matsudo and Salio (2011)
after analysing present weather reports of extreme events
and satellite observations indicate that extreme rainfall
events (>300 mm�day−1) associated with convection have
a maximum north of 30�S and east of 62�W associated
with the location of extreme MCSs. Anabor et al. (2008)
studied MCSs in the La Plata River Basin using infrared
images from the GOES-12 satellite and information from
the NCEP/NCAR reanalysis. They point out that these
systems start in the southern region of the La Plata River

FIGURE 5 Spatial distribution of average annual number of thunderstorm days computed with a threshold on detection range of 21 km

and based on the WWLLN lightning detection network data for the period 2008–2017
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Basin in the warm sector of a cyclone near the Atlantic
coast with CAPE values above 1,200 J�kg−1 and then
propagate and dissipate towards the north and northwest
of Argentina in conjunction with an anticyclone that
crosses the Andes mountain range and would partly
explain this northward movement.

The South Atlantic Convergence Zone (SACZ) is
another mechanism that affects the occurrence of sum-
mer DMC in northern Argentina. This pattern appears as
an elongated zone of cloudiness and precipitation that
extends diagonally from the northwest to southeast from
the Amazon to the South Atlantic. When the SACZ is
weak, it induces moisture convergence at low levels and
upward movements that favour the development of pre-
cipitation in northern Argentina, Paraguay, and southern
Brazil (Nogués-Paegle and Mo, 1997; Liebmann
et al., 1999; Liebmann et al., 2004; Marengo et al., 2004;
Seluchi and Chan Chou, 2009).

4.2.3 | Central region (CE)

Relative Td maximums are found in this region in the
Sierras de C�ordoba (SCBA) with annual averages greater
than 50 Td�year−1. Similar results were found by pio-
neers like Brooks (1925), which showed a maximum fre-
quency of thunderstorms at C�ordoba between the late
afternoon and early morning of the next day. Most
recently, several authors using satellite observations
have revealed that this region presents one of the most
favourable natural scenarios for the onset of the most
intense convective systems in the world with a mostly
nocturnal (Zipser et al., 2006; Romatschke and
Houze, 2011; Houze et al., 2015). The unique characteris-
tics of this region prompted in November 2018 deploy-
ment of the RELAMPAGO-CACTI field experiment
(Nesbitt et al., 2021).

Regarding the onset of the DMC originating in this
region, several authors suggest that the presence of the
SALLJ is a feature closely linked to the conditions pre-
ceding the formation of convection (Vera et al., 2006;
Salio et al., 2007; Vidal, 2014). In particular, Salio et al.
(2007) showed in a 3-year analysis that 41% of the sub-
tropical MCSs (south of 23�S) start on SALLJ days,
while in the absence of SALLJ this frequency drops to
12%. In relation to this point, Vidal (2014) points out
that the characteristics of the synoptic environment
favourable for the onset of convection, in addition to
the SALLJ, the presence of a frontal zone that favours
convergence at low levels and upward movements is
necessary.

Liu et al. (2010) used TRMM satellite-derived and
re-analysis data over a 16-year period to analyse the

large-scale favourable environments for the occurrence of
intense thunderstorms (>33 lightning strikes per
minute). In the case of SCBA, they point out that convec-
tion is favoured orographically by warm and moist air
supplied by the SALLJ at low levels and by drier and
warmer air within the boundary layer due to subsidence
on the eastern side of the mountain, while a weak trough
is observed at mid-levels (500 hPa) in the lee of the
Andes.

DMC in the region originates most frequently at the
end of the day and then organizes into large MCSs. These
systems develop and extend eastward to then form exten-
sive stratiform precipitation zones that dominate the pre-
cipitation climatology on the eastern slope of the SCBA
and further east in the plains region. They dissipate later
as they are affected by a northward advance of a barocli-
nic zone related to the horizontal advection of cold air
and the divergence of moisture at low levels (Salio
et al., 2007; Rasmussen and Houze, 2011; Rasmussen
et al., 2014; Mulholland et al., 2018). According to the
results of Matsudo and Salio (2011) the NW-SE distribu-
tion of these MCSs is associated with the presence and
interaction with frontal zones that are more frequent
south of 30�S.

Through satellite observations and surface data, sev-
eral studies that analysed the occurrence of severe
weather phenomena associated with these storms, such
as hail and tornadoes, coincide in pointing out that hail
is very frequent east of the Andes and the SCBA, mainly
between spring and summer (Mezher et al., 2012; Ras-
mussen et al., 2014; Bruick et al., 2019). In particular,
Kumjian et al. (2020) documented the occurrence of giant
hail (diameter greater than 15 cm) associated with a
supercell that affected the city of Villa Carlos Paz
(C�ordoba) in February 2018, very close to the world
record in Vivian (South Dakota) with a maximum dimen-
sion of 20 cm (Pojorlie et al., 2013).

4.2.4 | Cuyo region (CU)

In this region, which includes the highest peak of the
Andes Mountains, the annual isokeraunic map shows a
west–east Td gradient and maxima reaching values of
45 Td�year−1 in the centre and east of Mendoza. As in the
NO and CE regions, the interaction between the topogra-
phy and the atmosphere generates favourable conditions
for the onset and intensification of DMC (de la Torre
et al., 2011; Rasmussen and Houze, 2011; Rasmussen
et al., 2014). Rosenfeld et al. (2006), in a 4-year study
(2000–2003) in Mendoza, indicates that in 60% of the
days of the warm season (October to March) deep con-
vection is observed, 18% of the days hail is observed, and
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in 12% of the days severe hail (diameter >2 cm) is
observed. Mezher et al. (2012) point out that hail reports
are maximized between November and March. These
events cause great damage to the agricultural activity and
in the region which is why the Anti-Hail Control Pro-
gram has been in place for many years. de la Torre et al.
(2011) analysed three severe hailstorms using remote
sensing data and numerical model simulations. They also
observed mountain waves prior to the onset of these
storms and suggest that these waves could be a sufficient
mechanism for upward motions leading to convection
initiation.

4.2.5 | Patagonia region (PA)

Towards lower latitudes, the isokeraunic map shows an
increase in Td values in an SW–NE direction from the
centre of Patagonia towards the central plains of the
country. The Td values grow in magnitude south of
Mendoza where they vary between 20 and 45 Td�year−1.
Bechis et al. (2019) point out that this region develops
adequate conditions for the formation of dry lines.
According to the authors, these dry lines define a
boundary between air masses characterized by a strong
humidity gradient at low levels that favours the develop-
ment of DMC. In the rest of the Patagonia region, east
of the Andes, thunderstorms are less frequent due to the
forced subsidence of the eastern side of the Andes,
which leads to dry and stable conditions (Garreaud and
Gutiérrez, 2001; Garreaud et al., 2014).

4.3 | Seasonal maps

To analyse the seasonal distribution of the thunderstorm
days, seasonal maps were computed as shown in
Figure 6. The most evident characteristic is a shift of the
storm activity towards the northeast from summer to
winter with the northeastern region and the east of the
province of Buenos Aires being the only regions of the
country in which storms occur throughout the year
(Figure 6).

The spatial distribution of Td in summer (DJF;
Figure 6a) is similar to the annual pattern (Figure 5).
Maximums are observed in the NO region with values
exceeding 60 days in the north-central Jujuy, and
50 days on the border between Catamarca and
Tucum�an. There are also relative maximums in the NE
region with values exceeding 25 days (Misiones and
the east of Formosa). In central Argentina (SCBA, San
Luis, and eastern Mendoza) the average value is
30 days. As mentioned above, it is in central Argentina

where subtropical MCSs are most frequent during
summer (Salio et al., 2007; Romatschke and
Houze, 2010; Matsudo and Salio, 2011; Rasmussen and
Houze, 2011; Vidal, 2014; Mulholland et al., 2018; Liu
et al., 2020). According to the SALLJ event classifica-
tion proposed by Nicolini and Saulo (2006), Chaco Jet
events occur when maximum wind reaches latitudes
south of 25�S and occur 17% of summer days, explain-
ing part of the convective activity in central and east-
ern Argentina (Salio et al., 2002; Nicolini and
Saulo, 2006; Salio et al., 2007).

Rasmussen and Houze (2011), using 11 years of
TRMM satellite data, found that storms with broad con-
vective cores are the most frequent in the NO and CE
regions with a seasonal maximum between December
and January, while storms with deep convective cores are
more numerous in the SCBA and the southern region of
the La Plata Basin. Rasmussen et al. (2014) locate a noc-
turnal maximum of electrical activity in central
Argentina near the SCBA and the eastern Andes, and
Cecil (2009) indicates that 60% of the storms with at least
125 discharges per minute report hail.

At higher latitudes, in northern Patagonia (Figure 6a),
a Td gradient is observed with values between 10 and
25 Td�year−1, although it is less marked than in the
annual map. In this region, Bechis et al. (2019) indicate
that it is towards the end of spring and summer when the
highest frequency of dry lines occurs, with increasing fre-
quency towards western Patagonia.

Autumn (MAM) is a transition season in which the
SALLJ becomes weaker and the influence of the intensifi-
cation of the South Atlantic anticyclone that brings mois-
ture to the continent. The maximum Td remains as in
the summer located over Jujuy with a strong decrease,
now barely exceeding 20 Td�year−1, while in the NE and
the SCBA values of 15 and 10 Td�year−1 are observed,
respectively. Possia (2004) points out the Argentinean
coast as a region where explosive cyclogenesis is most fre-
quent in the country. The extraordinarily rapid develop-
ment of these systems is responsible for phenomena such
as intense winds, heavy rains, and electrical activity in
the region.

In winter (JJA), when the passage of cold fronts is
more frequent, there is a clear eastward displacement of
thunderstorm activity. A zonal gradient is observed in a
west–east direction and the maximum Td values cover
almost entirely the province of Misiones province with
values higher than 10 Td�year−1 and with maxima that
reaches 15 Td�year−1. During this season, rainfall in east-
ern Argentina is favoured by the penetration of cold
fronts in lower latitudes, intensifying baroclinic condi-
tions that favour the onset and development of DMC
(Seluchi and Marengo, 2000).
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In spring (SON), maximum values greater than
20 Td�year−1 are observed in the NE region. These
results coincide with those obtained by Rasmussen
et al. (2014) which indicate peak springtime electrical
activity in this region associated with thunderstorms
with deep or broad convective cores or both, while

Cecil and Blankenship (2012) locate in this season the
maximum frequency of hail in Paraguay and in the
NEA as, estimated from satellite data. Rasmussen and
Houze (2011) identified the maximum of thunderstorm
days in October in the southern region of the La Plata
basin.

39°S

41°S

43°S

45°S

47°S

49°S

51°S

53°S

55°S

39°S

41°S

43°S

45°S

47°S

49°S

51°S

53°S

55°S

77°W 75°W 73°W 71°W 69°W 67°W 65°W 77°W 75°W 73°W 71°W 69°W 67°W 65°W

FIGURE 6 Spatial distribution of the seasonal average of the number of thunderstorm days (Td) based on the WWLLN lightning

detection network data and assuming a range of detection of 21 km. (a) Summer (DJF), (b) autumn (MAM), (c) winter (JJA), and

(d) spring (SON)
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5 | CONCLUSIONS

This study presents of the spatial distribution of thunder-
storm days in Argentina as calculated from discrete data,
we used discrete data from 32 weather stations belonging
to the surface synoptic network of the NMS of Argentina
and continuous information observed by the WWLLN
detection network. We define a thunderstorm day as a
day when an observer hears thunder at least once. For
the WWLLN network, we define a thunderstorm day
when the network detects at least one electrical dis-
charge during the day in a given area centred on the
station.

One of the main challenges was to achieve a good
integration of these two sources of information. For this
purpose, it was necessary to work on the preparation of a
robust SYNOP database based on the application of qual-
ity controls. These focused on the analysis of present
weather reports (codes 13, 17, 29, and 91 to 99) and the
Daily Table of the “Hydrometeors and Phenomena”
meteorological notebook. Applying quality control
allowed, in addition to eliminating erroneous data, to
know the limitations of human observations and their
documentation in the meteorological notebook.

By using two different methods as proposed by
Czernecki et al. (2016) (Delta and TS) we defined the
average detection range in which humans detect thun-
derstorms in Argentina, and with the use of data from
the WWLLN network, climatological maps of thunder-
storm days were prepared according to the way in
which lightning would be perceived by humans. One of
the main advantages of integrating these data sources
and obtaining a human detection range is that it makes
it possible to create isokeraunic maps with data calcu-
lated by a lightning detection network. This represents
a great advance in the study of storm climatology since
it allows us to establish and for the first time in some
areas, the most frequent areas for discharges, which
until now were only established from human records
only. A isokeraunic map, made only from discrete
SYNOP data, would probably have introduced errors
when making interpolations, since the number and
spatial distribution of weather stations, at least in the
region of interest, is not sufficient to achieve a good
representativeness in accordance with the spatial and
temporal scale of the storms.

The mean human detection range found was
20 (22) km for the TS (Delta) method resulting in an
overall mean value of 21 km. This value may be the most
reliable estimate for how humans to perceive thunder-
storms in Argentina. The main advantage of the TS
method is related to the fact that it also analyses situa-
tions where thunderstorms were observed in the SYNOP

observations but did not occur in the WWLLN data and
vice versa. In contrast, the Delta method does not include
such situations and only takes into account the relative
sum of Tds derived from the SYNOP and WWLLN
datasets.

This study is one of the first in the region, as well as
Montana et al. (2021) in the Chilean region, to provide
such an analysis using such a large database (10 years).
Up to now, the only map elaborated in the country using
data from a lightning detection network was done by
Nicora (2014) for the 2005–2011 period, although the lat-
ter was at a lower resolution.

The annual map of Tds shows an absolute maximum
located in northwestern Argentina with values greater
than 100 Td�year−1, followed by a relative maxima in the
northeast (80 Td�year−1) and the SCBA (50 Td�year−1). A
similar distribution was observed in the isokeraunic map
corresponding to the summer, while in the other seasons
a general shift of the electrical activity towards the north-
east was observed. It was also shown that in central and
eastern Argentina it is possible to observe thunderstorms
throughout the year.

However, it is important to mention that some signifi-
cant differences in the detection radius at some of the sta-
tions in our study (e.g., Rio Gallegos, 35 km; Bariloche,
11 km) were found, and this could have an impact on the
calculation of Td at each station. It is difficult to explain
these differences and an answer can be very complex. As
mentioned in the Section 1, each weather station has dif-
ferent location characteristics and weather observers may
be more attentive at one than another. In addition, prob-
lems of inhomogeneity may be due to the fact that, at
some stations, more distant thunder can be heard, while
at others, high noise levels or other site-specific factors
may reduce the observer's ability to report a thunder-
storms (Changnon, 1989). Topography, fast-growing cit-
ies that are built over older stations, and station
relocations can also influence storm reports. As suggested
Reap and Orville (1990), the storm detection range can
also be increased at night when there is more silence by
adding a few additional kilometres to the detection range
(up to 26 km).

Finally, this methodology of integrating human and
automatic observations will make it possible to provide
continuity (because thunder day observations are con-
tinuing today) to the time series at particular weather sta-
tions and hence investigate the presence of trends in
storm frequency in a climate change scenario. In this
way, this information will be of great use in the develop-
ment of strategic plans that guarantee people's safety and
in the planning of adaptation policies in the face of future
scenarios, as those presented in Lavigne et al. (2019) on
trends in Td and flash density.
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