

Boletín mensual de la Estación magnética de Cipolletti DICIEMBRE 2019

LA ESTACION

La estación magnética de la ciudad de Cipolletti fue instalada a fines de 2015 dentro del predio de la estación meteorológica con el fin de monitorear intensidad total del Campo Magnético Terrestre en una región precordillerana. Los datos obtenidos en este punto geográfico son de gran interés geomagnético tanto científicos estudios como para aplicaciones industriales prospección de recursos naturales, abundantes en la zona. Por lo que, estos registros aportan información de gran relevancia al conocimiento del comportamiento y evolución del campo a nivel local, regional y global, mejorando el modelado del campo a distintas escalas.

Autores: María Inés Gil, Silvana Ricci, Jesús González, Sabrina Juárez, Carlos Romero.

Coord. Área Geofísica: Geof. Camila Farías cfarias@smn.gov.ar

Información sobre Copyright

Este reporte ha sido producido por empleados del Servicio Meteorológico Nacional con el fin de documentar sus actividades de investigación y desarrollo. El presente trabajo ha tenido cierto nivel de revisión por otros miembros de la institución, pero ninguno de los resultados o juicios expresados aquí presuponen un aval implícito o explícito del Servicio Meteorológico Nacional.

La información aquí presentada puede ser reproducida a condición que la fuente sea adecuadamente citada.

UBICACIÓN

La Estación Magnética Cipolletti se encuentra en la ciudad homónima de la provincia de Rio Negro. Sus coordenadas corresponden:

- Coordenadas Geográficas: 38,941°S; 67,978°W
- Altura sobre el nivel del mar: 265 m.

Figura 1: Ubicación de la Estación Cipolletti

FUNDAMENTOS

La instalación de la estación magnética permanente de Cipolletti permite conocer la evolución espacio-temporal de la intensidad total F del CMT en sitios de interés geomagnético, de ésta manera se podría contribuir con la confección del Modelo Internacional de Campo Geomagnético de Referencia (IGRF)

El SMN cuenta con predios accesibles como lo son las estaciones meteorológicas, en donde éste tipo de estaciones magnéticas se pueden instalar de manera rápida y sencilla, Cipolletti es la primera y ha demostrado ser de fácil manejo.

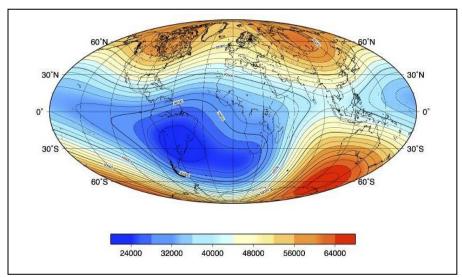


Figura 2: Modelo del CMT del IGRF

SELECCIÓN DEL SITIO

Particularmente, Cipolletti se localiza en un sitio de interés geomagnético y geológico, en una zona precordillerana donde la explotación de recursos naturales, como el gas, petróleo y minerales, es la actividad económica principal de la región. Por lo tanto, el registro obtenido es de fundamental importancia en los estudios de prospección de las industrias de petroleras y/o mineras.

El instrumental se localizó en un principio en un lugar (Sitio 1) protegido del viento y del sol, cuyas coordenadas son 38º56,45'S, 67º58,7'W. Desde el momento en que se instaló, se comenzaron a registrar valores de referencia del Campo Magnético Terrestre. Por el transcurso de casi un año, en conjunto con el área de Geomagnetismo de la UNLP, los datos obtenidos fueron validados con registros del Observatorio Geomagnético de Trelew, por ser el más cercano a la estación. Los resultados arrojaron que el lugar era el adecuado para el registro de Intensidad del CMT (F).

Luego de dos años de funcionamiento se realizo un nuevo relevamiento magnético del sitio para ubicar la casilla construida especialmente para albergar el instrumento en su interior y protegerlo de los eventos meteorológicos locales, sobre todo de los vientos patagónicos fuertes y las tormentas que inundan el predio. La misma fue construida en su totalidad con materiales no ferromagnéticos, y la mano de obra fue llevada a cabo en colaboración mutua por: Rodolfo Merlino, jefe de la estación meteorológica Cipolletti, Denis Martínez, presidente de la Fundación de Astrónomos Aficionados del Hemisferio Sur, y, María Inés Gil, geóloga encargada de la Estación Magnética Cipolletti.

Por lo tanto, el instrumento fue movido 13 m al S y 4 m al E (*Sitio 2*) desde su posición original, dando también buenos resultados en el registro magnético y mostrando una diferencia de aproximadamente 30 nT con respecto a la posición inicial (Figura 6). Esta diferencia aun es motivo de estudio ya que la misma nos permitirá corregir todos los datos obtenidos desde la instalación de la estación a un único sitio de medición.

INSTRUMENTAL

La intensidad total F del CMT en ésta Estación se registra con un Magnetómetro de Precesión Protónica, marca Geometrics, modelo G856; cedido por la Facultad de Ciencias Astronómicas y Geofísicas de la Universidad Nacional de la Plata.

El registro del CMT durante más de cien años fue desarrollado con instrumental analógico clásico. En la actualidad, dicho equipamiento está siendo reemplazado por instrumental digital que facilita y mejora la calidad de registro de las componentes del campo magnético terrestre.

Figura 3: Magnetómetro de Precesión Protónica, Marca Geometrics, Modelo G856

OBSERVATORIO MAGNÉTICO OPERATIVO

La sigla adoptada para la Estación es CPL. Se tiene en forma permanente un magnetómetro de precesión protónica, para el registro de F del CMT. Se trata de un Magnetómetro Geometrics G856, con administración de energía externa. Las baterías utilizadas no afectan el registro magnético, las mismas son de gel, de 12v/7A o 12v/12A, y poseen una autonomía de 2 a 3 semanas aproximadamente.

El registro óptimo del sistema es cada 5 minutos a diferencia del sistema INDIGO de los Observatorios de Pilar y Orcadas que manejan intervalos de medición de 1 minuto. Los datos son almacenados en la memoria del equipo, mientras tenga energía. Por lo que, cada 10-14 días aproximadamente, la serie de datos es descargada a una computadora y la batería intercambiada.

En gabinete los datos son procesados en una planilla Excel y validados constantemente con los registros de F de la red de Observatorios del país. Se obtienen promedios horarios, mensuales, y anuales. Luego se calculan, utilizando los días calmos establecidos por la IAGA, las curvas de variación diurna para cada mes de registro, y se comparan estos resultados con un índice de actividad geomagnética local, en formatos horarios, trihorarios o diarios.

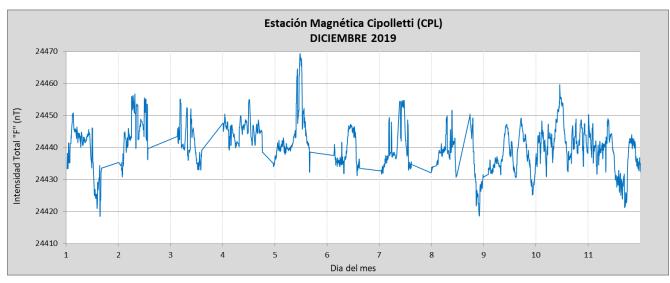
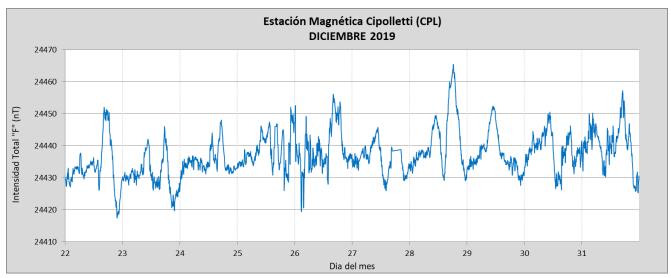


Figura 4: Casilla Geomagnética de la Estación CPL



REGISTROS

Se presentan los registros absolutos de F que pudieron obtenerse durante el mes de Diciembre de 2019. Se muestra también la variación de F según los promedios mensuales desde Noviembre 2015 hasta la Actualidad. Los primeros días del mes se ve un faltante de datos debido a inconvenientes en la electrónica del instrumento.

Figuras 5 (a,b,c): Intensidad total del campo magnético en función del tiempo

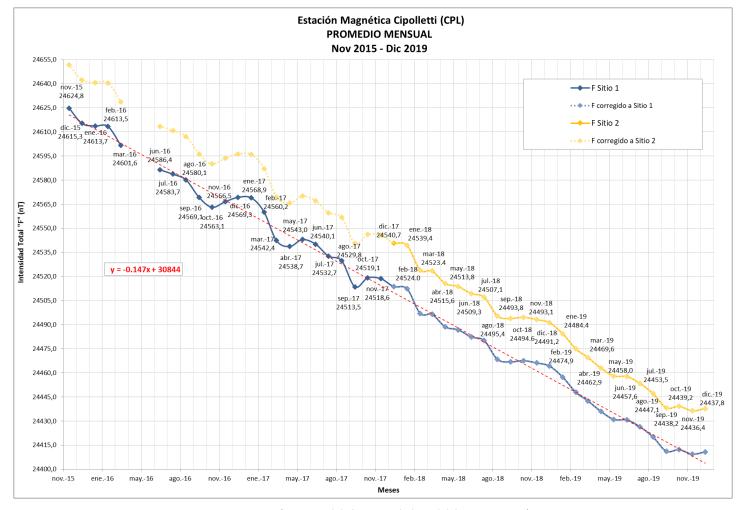


Figura 6: Variación mensual de la Intensidad total del campo magnético.

OBSERVACIONES SOLARES

No se cuenta con imágenes del sol en el mes de diciembre.

COMENTARIOS FINALES

La actividad solar y, por lo tanto, la actividad geomagnética se mostraron bajo condiciones relativamente tranquilas durante todo diciembre. Los eventos distintivos del mes fueron producto de la llegada de viento solar fuerte proveniente de agujeros coronales en la atmosfera solar. Esto provoco condiciones activas del campo geomagnético durante los días 18-19 y 25, pero en ninguno de los casos alcanzaron niveles de tormenta según los registros de índices de actividad.

Las condiciones del viento solar (velocidad, densidad de protones, temperatura) durante el mes de Diciembre pueden verse en el siguiente link:

https://www.ngdc.noaa.gov/dscovr/portal/index.html#/vis/summary/1m/1575169200000

Para mayor información sobre lo abordado, consultar el apartado de conceptos teóricos en:

http://www3.smn.gov.ar/serviciosclimaticos/?mod=vigilancia&id=24