EDITORIAL .. 249
G. DEREBANT. — Sobre la previsión estadística del tiempo 251
ROBERTO M. QUINTESA. — Sobre la utilización de diagramas estalápticos en meteorología 277
SEBASTIÁN FELÍC. — Influencia de la temperatura ambiente sobre el porcentaje de grasa buriométrica en la leche de vaca 289
KURT WENGER. — Análisis de la variación diurna de la presión en la República Argentina .. 305
JUAN J. BURGOS, ALBERTO CAGLIOLO y MODESTO C. SANTOS. — Exploración microclimática en la selva Tucumano-Oránense 314
ARTÍCULOS BREVES: FEDERICO J. PROHASA y TERESA UGARTECHE DE GARCÍA. — Gradiente vertical de temperatura en la zona central de la cordillera 342
NOTAS Y COMENTARIOS: W. SCHWERTPEGER. — Acerca de recientes trabajos sobre la circulación general de la atmósfera y las variaciones del clima .. 344
TEXTOS: Transcripción fragmentaria de actas del Primer Congreso de la OMM ... 346
ACTUALIDADES .. 349
RESEÑAS BIBLIOGRÁFICAS 351
ÍNDICE DEL TOMO I ... 357
MINISTERIO DE ASUNTOS TÉCNICOS
DIRECCIÓN GENERAL DEL SERVICIO METEOROLÓGICO NACIONAL

Director:

DR. RAÚL A. MINDÉ

Subdirector:

D. ENRIQUE OLAMIDO

DIRECCIÓN Y REDACCIÓN DE "METEOROS"

Director:

DR. MARTÍN S. CAPPELLETI

Accesorio de la Dirección y colaboradores de la Redacción:

EL PERSONAL CIENTÍFICO Y TÉCNICO DEL SERVICIO METEOROLÓGICO NACIONAL

Secretario de Redacción:

AMADO GARY (II)

CONSEJO TÉCNICO DE METEOROLOGÍA

CAP. DE FRAGATA (R.) CARLOS NÚÑEZ MONASTERIO

VOCACIÓN DE PROGRESO

Sí, no basta la simple consideración de las necesidades de nuestro país en lo que concierne a la formación de técnicos y científicos en Meteorología y campos afines. Basta, dentro de los límites que le impone la realidad, intentar y lograr que el país, a través de sus instituciones, pueda contribuir a la solución de los problemas que, en momentos de crisis, pueden llegar a afectar el bienestar y el futuro de la nación.

La solución de estos problemas requiere una disposición activa de todos los elementos que componen la sociedad. En primer lugar, la voluntad de los más altos cargos del Estado, que debe estar siempre dispuesta a tomar decisiones que puedan ser contrarias a intereses puntuales, pero que, en total, sean beneficiosas para el país y su pueblo.

En segundo lugar, la cooperación activa de los científicos y técnicos, que deben estar dispuestos a dar su máximo esfuerzo en el desarrollo de los medios que permitan solucionar los problemas que se presenten.

En tercer lugar, la colaboración activa de todos los sectores de la sociedad, que deben estar dispuestos a colaborar en el esfuerzo conjunto para que el país pueda avanzar hacia un futuro más glorioso.

Respecto de la promoción de la Meteorología y de la Geofísica, la Dirección General del Servicio Meteorológico Nacional desea hacer valer que el país cuenta con un personal técnico y científico altamente capacitado, que es capaz de hacer frente a los desafíos que la época presenta. Sin embargo, es necesario que se realicen esfuerzos adicionales para que esta disciplina siga avanzando y se convierta en una herramienta más eficaz para el bienestar nacional.

La Dirección General del Servicio Meteorológico Nacional invita a todos los sectores de la sociedad a colaborar en el desarrollo de la Meteorología y de la Geofísica, para que el país pueda avanzar hacia un futuro más brillante.
de Navegación Aérea de las Regiones Sudamericanas y Atlántico Sud, a
la cual asistió una delegación de la OMM en carácter de observadora.

El programa impone, es indudable, una expansión natural en todos
los órdenes, y la vida, por su parte, va dejando claros en las filas que
deben cubrirse con nuevos elementos. El problema surge ya estas pre-
guntas: ¿En qué número y con qué ética y profusión preparará el SMN
a los hombres del futuro, a esos que habrán de mantener en el
tiempo el prestigio ganado por los que actuaron desde 1975? ¿Cuáles
disciplinas nuevas habrá que incorporar en los planes próximo? ¿Qué vocaciones
singulares no habrá que alejar para el desarrollo de la investigación autó-
mática en una nueva propuesta al análisis de lo infinitamente pequeño a
la vez que al estudio efectivo de las velocidades supercónicas, al vuelo
estrastronómico y la meteorología atómica, en que todos los valores habituales
pueden exponerse extrapolarse?

Además del perfeccionamiento del Pronóstico Aéreo, en un país de
fermos tradición agraria y ganadera como el nuestro, resultan inheren-
tes a la evolución de las razas pecuarias y de las plantas cultivadas
en concordancia con las condiciones de clima y suelo. A la grande y
creciente industria, asimismo, interesa sobrenombre el factor climático.
Y el mismo problema de la seguía periódica o periodica — de incidencia
mundo — no es ajeno a nuestro territorio ni ha de escapar a nuestras
previsiones. ¿Qué hacer, pues, ante el llamado? En el campo de la capa-
citación profesional y la investigación científica la respuesta es seguir
adelante con lo que se está realizando. Sacar el mayor provecho de las
posibilidades de la Ley Universitaria y del apoyo que el Estado presta
a las Reparticiones. Servir al país con entusiasmo fresco y confianza firme.
Activar planes y programas en acto en los momentos que para ello
tiene señalado, esta era Joquimtica, inspirada en el respeto de los que
brindan su trabajo físico y las excelencias de su quehacer intelectual al
bienestar pleno de la sociedad. El imperativo es no mirar para atrás sino
hacia lo venturoso. Pensar que el país ocupa un inmenso y privilegiado
lugar geográfico, que tiene cultura esculpida y claro sentido de la argen-
tinidad y de la universalidad en la mente de sus dirigentes y en su
pueblo, y que ha de decir su mensaje histórico con no menor esfuerzo
que aquel que el progreso exige a otras naciones, pero con la más viva
expresión de optimismo.

Sobre la Prevención Estadística del Tiempo
POR G. ODEBRANT *

Resumen. — Este artículo, que no se ocupa simplemente de una temática aún
absolutamente desconocida en América Latina, detalla las posibilidades de la prevención
estadística de los fenómenos climáticos. En el estudio de la evolución de la
temperatura y de la presión atmosférica, se analizan los resultados obtenidos por
los distintos métodos empleados, destacando la importancia de la estadística como
herramienta de la predicción climática.

En conclusión, se resalta la necesidad de una mayor investigación en este campo,
con el objetivo de mejorar la calidad de las previsiones climáticas.

1. Cómo se Plantea el Problema de la Prevención Numérica del Tiempo

No es superficial recordar algunas ideas esenciales, aunque parezcan
abstraerse de la realidad cotidiana.

El problema de la Prevención del Tiempo, en efecto, se descompone en
dos partes:

1) Determinar completamente el estado de la atmósfera y su
distribución en el instante inicial 0.

* Ante un libro de "ElTiempo" (Buenos Aires), Anvers Técnico de la Dirección General del Servicio
Meteorológico Nacional.
2) Deducir de allí el estado de la atmósfera en un instante ulterior \(t > 0 \). El meteorólogo tiene pues dos tareas que cumplir: el diagnóstico y el pronóstico. Examinemos hasta donde se ha llegado en estas dos fases del problema.

El diagnóstico ha hecho grandes progresos gracias al desarrollo de la red mundial de observación y a su prolongación en altitud desde que la técnica de los sondes ha avanzado el estado de explotación —y también gracias a las líneas de manchas—, que ha hecho comprender el mecanismo del movimiento de los grandes movimientos de la atmósfera y de la producción de sus perturbaciones. Si es todavía insuficiente en ciertas regiones del globo, ello obedece sin duda a causa de dificultades técnicas o materiales, y no por lo que se tenga en resolver un problema científico difícil.

Con el pronóstico nos encontramos en una situación enteramente diferente: se debe, ante todo, resolver un problema puramente científico del cual ninguna técnica, ningún arte, ninguna organización, son capaces por sí solos de dar una solución satisfactoria.

Actualmente no háccemos prevision en el sentido verdadero del término. No faltamos más que prolongar el porvenir, por extrapolación, los movimientos que se observan en un momento dado, sin hacer intervenir de ninguna manera —debido a que son totalmente desconocidas— las leyes físicas que rigen la evolución de la atmósfera.

Múltiples autores han arribado el sueño de una previsión verdadera (matemática) del Tiempo, buscando la solución de un sistema de ecuaciones de derivadas parciales, proporcionadas por la hidrodinámica y la Termodinámica clásicas, que verifica además las condiciones iniciales resultantes del diagnóstico, y ciertas condiciones en los límites (por otra parte bastante delocas para precisar).

En suma, han planteado la cuestión bajo la forma del problema tipo de la Física Matemática del último siglo. Este giro de tendencias, aunque empleado todavía en nuestros días, está universalmente considerado como una utopía, si bien no por las razones que debería serlo. La mayoría de los esfuerzos científicos se hallan bastante orientados a crear, a efecto que el problema se resuelve de esta manera, y que un cerebro extraordinario, en posesión de los datos y dotado de una habilidad de cálculo excepcional, podría resolverlo. Mi opinión es, por el contrario, que si fuera ése la verdadera naturaleza del problema no se habrían hallado, por más complicadas que fueran los métodos matemáticos, las máquinas de calcular y la organización del trabajo susceptibles de resolverlo en plazos aceptables, vista la enorme importancia práctica de su solución.

Pero la razón por la cual esta concepción físico-matemática no ha logrado ningún resultado, no radica precisamente en su complejidad, sino simplemente en que dicha concepción no tiene ninguna clase de valor para el medio atmósferico. Una afirmación tan categórica puede parecer sin duda cuestionable por estar todos nosotros más o menos habituados a pensar según la manera clásica y tradicional, y no nos resulta fácil desembrasar los conocimientos originales recibidos. Sin embargo, la Meteorología no sería la primera ciencia que llevara a sus filos a revisar sus conceptos fundamentales. Citaré la revolución que se ha operado ya en un dominio muy vecino: la Mecánica de los fluidos turbulentos, que no se ha acercado a la experiencia de la que se aleja extraordinariamente la Hidrodinámica más que introduciendo conceptos estadísticos, y, para decirlo todo, introduciendo en una forma o en otras las noiones que con Ph. Wehrlí hemos sistematizado en esta nueva rama de las Matemáticas a la cual hemos llamado Cálculo Aléatorio. Citaré todavía las Nuevas Mecánicas (Orndorffía, Caúntica, de Dirac), que los físicos teóricos han debido crear para representar los fenómenos atómicos. En ellos también los conceptos más fundamentales han sido revolucionados. Un gran físico no está ya representado por un simple número, sino por una matriz, y es de esta manera como se ha podido imaginar un modo indirecto de introducir nociones estadísticas.

2. EL PUNTO DE VISTA ALÉATORIO EN METEOROLOGÍA

Así se conduce recordar que mientras Ph. Wehrlí y yo tratábamos de edificar una Mecánica de la atmósfera, el carácter caótico y cambiantes de los elementos meteorológicos despertó nuestra atención en el curso de nuestra larga experiencia de meteorólogos y futuros llevados a la Mecánica Aléatoria, de la cual hemos hecho conjuntamente con trabajos experimentales, importantes aplicaciones a la Turbulencia. Estos últimos años, alentado provisionalmente de la Meteorología, he hecho aplicaciones a la Física atómica y nuclear. Sería justo ahora que la Meteorología se beneficiara a su vez con el nuevo instrumento cuya realización ella ha inspirado. En ello me he ocupado en estos últimos tiempos y es lo que me ha conducido a considerar bajo un nuevo aspecto el problema de la Previsión del Tiempo. Este aspecto coincide exactamente con el método indiciado recientemente por T. E. W. Schuman (Statistical Weather Forecasts); por ello denominaremos a este método previsión estadística del tiempo.

Expongamos en qué consiste el punto de vista aléatorio. El resultado \(\mathcal{X} \), de la medida de un elemento meteorológico —digamos, por ejemplo, la presión barométrica en un lugar \(M \) a las \(9 \) horas del día \(d \) — es ya considerado como un simple número aritmético, sino como el resultado de una prueba ejecutada sobre un «conjunto» el número aléatorio \(X \) (es decir, un número variable susceptible de tomar a priori un conjunto de valores aritméticos con sendas probabilidades). Los valores sucesivos de la presión, en su desarrollo cronológico, permiten, por sus frecuencias respectivas estimar esas probabilidades; dígase de otra manera, informarse sobre el contenido del conjunto \(X \). La descripción de este contenido puede concretarse por el valor probable \(\bar{X} \) y por la desviación estándar:

\[
\bar{X} = \sqrt{\mathcal{X}^2}, \quad \text{donde:} \quad \mathcal{X} = X - \bar{X}
\]

Para desembazararse de las dimensiones físicas, se introduciría el cociente:

\[
Y = \frac{\mathcal{X}}{\sigma}
\]

o número aléatorio reducido, cuyo valor probable es nulo y la desviación estándar igual a la unidad.
Vayamos más lejos: En lugar de considerar la serie cronológica de los valores de \(X \) (en otras palabras: el barógrama) como una función simple \(X(t) \) de la variable real \(t \), vamos a considerarla como una serie de pruebas hechas sobre una secuencia de números aleatorios \(X_i/t \), que corresponden cada uno a un instante \(t \). Se crea así una función aleatoria \(X_i \) de \(t \). Los números aleatorios \(X_i/t \) y \(X_i/t_i \), correspondientes a dos instantes diferentes \(t \) y \(t_i \), presentan entre sí una correlación, representada por el momento rectangular \(X_i/t \cdot X_i/t_i \) o aun por el coeficiente de correlación \(Y/t \cdot Y/t_i \) (si se opera con números aleatorios reducidos). Esta correlación puede ser estimada por la media del producto \((t) \cdot (t_i) \) de los valores de \(Y \), tomados sobre el conjunto de los instantes \(t \) y \(t_i \) que presentan entre sí una diferencia constante \(t_i - t \).

Este es el coeficiente de autocorrelación que reemplaza la noción general de continuidad en la función aleatoria, o más bien, el ordenamiento en la sucesión, para la función de variable real.

El objeto del Cálculo Aleatorio es extender a las funciones aleatorias las nociones esenciales del Análisis Matemático (derivada, primitiva, integral, analítica), de manera que sea posible continuar sirviéndose de algoritmos tradicionales del Análisis y de sus reglas de cálculo. La fisión de la función aleatoria se refleja fielmente en el coeficiente de autocorrelación, que es una función ordinaria de variable real, de una clase de Barzil, inferior a la de la de la realización de la función aleatoria sobre una prueba individual. Hay así funciones aleatorias derivables, analíticas, periódicas, casi periódicas, etc. De las funciones naturales del Análisis (polinomios, exponentiales, trigonométricas, elípticas, etc.) pueden ser derivadas las funciones aleatorias correspondientes.

Se pueden concebir, (naturalmente, funciones aleatorias de varios parámetros "ciertos" (1)): las coordenadas del espacio, \((x, y, z)\) y el tiempo \(t \). Creamos así campos aleatorios de escalares y vectores, que se adaptan bien a la representación de fluidos turbulentos.

Las ecuaciones de la Mecánica de los Fluidos se transforman así en relaciones diferenciales entre los momentos estadísticos de los grandes aleatorios y no ya entre los valores de los grandes físicos en sí mismos, que son demasiado complicados para prestarse a las operaciones del cálculo diferencial.

Pero aún bajo esta forma el problema hidrodinámico está dentro del tipo de la Física Matemática. Ahora bien, vemos que la revolución motivada por el punto de vista aleatorio es mucho más profunda que aquel.

3. EL ESPACIO DE LOS NÚMEROS ALEATORIOS

A toda medida física le corresponde un número aleatorio, que siempre se puede suponer que es reducido, y que designaremos con \(X \) (\(X = 0; \ v = 1 \)). A cada número aleatorio (reducido) \(X \), se le puede hacer corresponder un vector de un espacio abstracto: el espacio de los números aleatorios. La topología de este espacio queda fijada tomando como producto escalar de dos vectores al coeficiente de correlación \(X_i X_j \).

4. PRINCIPIO DE LA PREVISIÓN ESTADÍSTICA

Recordemos primero algunas propiedades del espacio de Hilbert.

Un número límite o infinito de vectores \(X_1, X_2, \ldots \) se dirán linealmente independientes si se pueden hallar números \(a_1, a_2, \ldots \), no todos nulos, tales que:

\[a_1 X_1 + a_2 X_2 + \ldots = 0 \]

En este caso, estos vectores y todos los que se pueden formar por combinaciones lineales, engendrarán una variedad lineal del espacio de Hilbert, (algo así como un plano en el espacio de tres dimensiones engendrado por dos vectores básicos).

En el caso contrario, los vectores \(X_1, X_2, \ldots \) forman una base completa del espacio de Hilbert, y un vector cualquiera \(x \) se expresa en función lineal de estos vectores de base:

\[x = a_1 X_1 + a_2 X_2 + \ldots \]

(así como en el espacio de tres dimensiones, un vector cualquiera se expresa linealmente por tres vectores de base, con tal que éstos no se hallen en un mismo plano).

Establecido esto, si en un instante inicial dado \(0 \), el conjunto de las medidas meteorológicas (o diagnóstico) constituye un espacio de Hilbert (y no solamente una variedad lineal de este espacio), se podrá...
haller en él una base completa \(\{X_i\} \) y todo elemento meteorológico \(\mathcal{X} \), cualquiera sea, en un instante ulterior \(t \), podrá ser calculado de "casi con certeza", es decir con una desviación tipo nula, por una combinación lineal de los vectores de base (que se refieren todos al instante inicial) y a los instantes anteriores.

En este caso, no habría ningún límite teórico para la precisión de la previsión que crecería indefinidamente con la perfección del diagnóstico.

Contrariamente, por la naturaleza misma de las cosas, la información inicial, por completa que ella sea, no abarca más que una variedad lineal \(v \) del espacio de Hilbert, y no este espacio, por completo y no podríamos calcular más que la proyección \(\mathcal{X}_v \) de \(\mathcal{X} \), sobre la variedad \(v \). Quedará siempre un error aleatorio: la proyección \(\mathcal{X}_v ' \) de \(\mathcal{X}_v \) sobre la variedad \(v ' \) complementaria de \(v \), error que es estadísticamente medible por: \((1) \).

Ver figura 1.

\[
\mathcal{X}_v = 1 - \mathcal{X}_v^2
\]

Nos encontraremos entonces colocados en la misma posición que los Físicos ante el principio de Heisenberg, lo que expresaremos diciendo: Cualquiera sea la extensión de nuestro saber, no conocemos nunca nada más que la proyección del Porvenir sobre el Pasado.

Sea ello como fuere, desde el punto de vista práctico, sólo se dispondrá de un número finito de informaciones, de manera que la Previsión estará siempre sujeta a un error estadístico, que puede ser subjetivo o intrínseco. Del origen de la incertidumbre no discutiremos aquí, pues es un problema más metafísico que físico.

5. FORMA PRACTICA DEL PROBLEMA

El problema se presenta, pues, prácticamente así:

1) Se dispone de un número finito \(n \), de números aleatorios de base \(X_1, X_2, \ldots, X_n \). Estos datos constituyen el diagnóstico. Pueden consistir en elementos meteorológicos cualesquiera:
- Presión barométrica en diversas estaciones;
- Temperaturas en diversas estaciones;
- Altura de la superficie isobara 500 mb;
- Temperatura y altitud de la tropopausa; etc., etc.

(1) La notación \(\{X_i\} \) significa un conjunto de elementos \(\{X_1, X_2, \ldots, X_n\} \) tomando \(i = 1, 2, \ldots, n \).

(2) Siempiante \(v \) y \(v ' \) ortogonales.

Todos estos elementos pueden ser mezclados sin inconvenientes, después de haber sido llevados a la forma reducida, que no tiene dimensiones físicas.

El aporte de un elemento cualquiera, por absurdo que parezca, no compromete en ningún caso la calidad de la previsión; a lo sumo resultaría indepent (pues evidentemente \(\mathcal{X}_v^2 \) no puede decrecer nunca).

La única condición impuesta es que estas informaciones se refieran a un instante inicial \(0 \) o a instantes anteriores para que se trate en realidad de una Previsión.

2) Se desea deducir la proyección \(\mathcal{X}_v \) de un vector \(\mathcal{X} \), considerado como desconocido, y que representa un elemento meteorológico cualquiera en el instante ulterior \(t > 0 \) sobre la variedad \(v = \{X_1, X_2, \ldots, X_n\} \).

Tal es la forma matemática que reviste, desde el punto de vista aleatorio, el problema de la Previsión, y su solución es la única solución científica que se puede dar.

Esta solución supone que se han determinado por un número suficiente de observaciones anteriores: los coeficientes de correlación:

\[
r_y = X_i X_j
\]

existentes entre los datos; y los coeficientes de correlación:

\[
r_{xy} = \mathcal{X}_v X_i
\]

de la incógnita con los datos.

Pongamos:

\[
\mathcal{X} = \mathcal{X}_v + \mathcal{X}_v'
\]

siendo \(v ' \) la variedad complementaria (ortogonal) de \(v \): \(\mathcal{X}_v = a_1 X_1 + a_2 X_2 + \ldots + a_n X_n \)

Los coeficientes \(a \) son entonces soluciones del sistema de ecuaciones lineales:

\[
\begin{cases}
r_{11} = a_1^2 + a_2^2 + \ldots + a_n^2 \\
r_{12} = a_1 a_2 + \ldots + a_n a_{n+1} \\
\vdots \ \vdots \\
r_{nx} = a_1 a_{n+1} + \ldots + a_n a_n \\
\end{cases}
\]

cuya solución está bien determinada si:

\[
\Delta = \begin{vmatrix} r_{11} & r_{12} & \ldots & r_{1n} \\ r_{21} & r_{22} & \ldots & r_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ r_{nx} & r_{n2} & \ldots & r_{nn} \end{vmatrix}
\]

La matriz \(\Delta \) no debe ser nula, o en caso contrario:

\[
\begin{vmatrix} 1 & r_{12} & \ldots & r_{1n} \\ r_{21} & 1 & \ldots & r_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ r_{nx} & r_{n2} & \ldots & 1 \end{vmatrix} = 0
\]
es decir, si las \(X_i \) no forman parte de una variedad lineal de menos de \(n \) dimensiones, en cuyo caso se eliminarían los datos superfluos (esto querría decir en suma que se ha dado varias veces la misma información sin advertirlo).

Antes de continuar no está de más señalar el carácter completamente nuevo e inspirado de tal solución.

Por lo tanto, puesto que estas concepciones salen fuera del problema meteorológico que tenemos en vista, el problema de Física-Matemática que tenemos según la nueva fórmula, se reduce a la solución de un número más o menos grande de ecuaciones algebraicas lineales simultáneas.

No se trata de problemas de análisis del tipo del siglo XIX. Y, en realidad, no hay en ello nada que pueda sorprendernos. ¿Acaso la mayor parte de los problemas de Física-Matemática no se ponen precisamente bajo la forma de una ecuación integral de Fredholm, cuya resolución práctica se reduce justamente a la de un sistema de ecuaciones algebraicas lineales? El punto de vista aleatorio nos conduce directamente y sin artificios a esta forma del problema. Esto nos permite creer que hemos comprendido la verdadera naturaleza del mismo.

En efecto, los más áridos problemas de Física-Matemática, cuando se quiere obtener una solución matemática, no utilizan para su solución —y cómo podría ser de otra manera— más que operaciones racionales efectuadas con números racionales. La transcendencia del problema se mide por el grado de complejidad de estas operaciones racionales. Los artificios matemáticos empleados son solamente maneras de reducir el número y la dificultad de aquellas operaciones. Desde el momento en que el hombre dispone de poderosas máquinas de calcular, como las nuevas máquinas electrónicas, estas astucias matemáticas se han convertido en refinamientos prácticamente inútiles, del dominio de la estética pura.

Pero, volvamos al problema que nos ocupa. Una vez calculados los coeficientes \(a \), la ecuación lineal:

\[
\mathcal{X} = a_1 x_1 + a_2 x_2 + \ldots + a_n x_n
\]

nos permite resolver todos los problemas de previsión relativos al elemento \(\mathcal{X} \).

En efecto, esta ecuación, que es una ecuación vectorial, es verdadera aun entre las proyecciones de vectores sobre un eje cualquiera.

Ahora bien, la teoría de los espacios de números aleatorios nos muestra que la operación de resolver, la realización en números "ciertos" (o números reales ordinarios) de los valores posibles de números aleatorios, es precisamente una proyección de los vectores representativos sobre un eje. Este hecho no es distinto de la noción de vector propio en Mecánica Cuántica. De manera que, si conocemos en un caso dado, los valores precisos \(x_1, \ldots, x_n \), que tomamos los números aleatorios \(X_1, \ldots, X_n \), conocemos el valor preciso que toma \(\mathcal{X} \), en estas circunstancias, para la ecuación:

\[
\mathcal{X} = a_1 x_1 + a_2 x_2 + \ldots + a_n x_n
\]

Pero el número aleatorio \(\mathcal{X} \), —escoordinado bien— no es más que la proyección del número aleatorio desconocido \(\mathcal{X} \) sobre la variedad lineal \(V \), que contiene los datos suministrados por el diagnóstico, y que es por esencia insuficiente o incompleto.

6. EL COEFICIENTE DE CORRELACIÓN MULTIPLE

El error cometido estimando la incógnita \(\mathcal{X} \) por su proyección \(\mathcal{X}_v \), sobre la variedad \(V \), está medido por el vector (perteneciente a la variedad complementaria ortogonal \(V' \) de \(V \)):

\[
\mathcal{X}_v - \mathcal{X} - \mathcal{X}_v
\]

Es éste un error estadístico que puede ser caracterizado por su valor tipo, cuyo cuadrado es (ver figura 1):

\[
\overline{\mathcal{X}_v}^2 = \overline{\mathcal{X}_v}^2 - 2 \overline{\mathcal{X}_v} \overline{\mathcal{X}_v} + \overline{\mathcal{X}_v}^2 = \overline{\mathcal{X}_v}^2 - 2 \overline{\mathcal{X}_v} \overline{\mathcal{X}_v} + \overline{\mathcal{X}_v}^2
\]

Ahora bien: \(\overline{\mathcal{X}_v}^2 = 1 \) por hipótesis.

Además:

\[
\overline{\mathcal{X}_v} \overline{\mathcal{X}_v} = (\overline{\mathcal{X}_v} \overline{\mathcal{X}_v}) \overline{\mathcal{X}_v} = \overline{\mathcal{X}_v} \overline{\mathcal{X}_v} + \overline{\mathcal{X}_v} \overline{\mathcal{X}_v}
\]

Pero:

\[
\overline{\mathcal{X}_v} \overline{\mathcal{X}_v} = 0
\]

pues las variedades \(V \) y \(V' \) son ortogonales.

Luego, simplemente:

\[
\overline{\mathcal{X}_v}^2 = 1 - \overline{\mathcal{X}_v}^2 = (\text{Teorema de Pitágoras})
\]

En lugar de medir el desacuerdo entre la incógnita \(\mathcal{X} \) y su estimación \(\mathcal{X}_v \), por el error cometido, se puede igualmente medir su acuerdo, por medio de su coeficiente de correlación.

\[
R = \frac{\overline{\mathcal{X} \mathcal{X}_v}}{\sqrt{\overline{\mathcal{X}_v}^2 \overline{\mathcal{X}_v}^2}} = \frac{\overline{\mathcal{X}_v \mathcal{X}_v}}{\sqrt{\overline{\mathcal{X}_v}^2 \overline{\mathcal{X}_v}^2}} = \text{también } \sqrt{\overline{\mathcal{X}_v}^2}
\]

Entre el cuadrado del error tipo \(\overline{\mathcal{X}_v}^2 \), que designaremos por \(e_v^2 \), y el coeficiente de correlación \(R \) se tiene pues la relación:

\[
e_v^2 = 1 - R^2
\]

El coeficiente de correlación \(R \) que acabamos de introducir así no es otro que el que los técnicos en Estadística llaman ya coeficiente de correlación múltiple.

Su expresión, por medio de los coeficientes de correlación simples (los \(r \)), es fácil de obtener por vía geométrica. Se demuestra en Geometría Euclidiana de \(n \) dimensiones, que el cuadrado del \(n \)-paralelepípedo sobre \(n \) vectores: \(X_1, X_2, \ldots, X_n \) (figura que se llama también un \(n \) vector) tiene por expresión el determinante formado con los productos escalares de estos vectores tomados dos a dos. Esta relación es la extensión de la que se puede establecer en el plano.
(caso de 2 vectores). El área del paralelogramo (o 2-paralelepípedo) construido sobre X_1 y X_2 tiene por cuadrado (ver fig. 2):
\[X_1^2 X_2^2 \text{sen}^2 \theta = X_1^2 X_2^2 (1 - \cos^2 \theta) = X_1^2 X_2^2 \left(1 - \frac{X_1 \cdot X_2}{X_1^2 X_2^2}\right) \]
\[= \frac{X_1^2 X_2^2}{X_1 X_2} \cdot \frac{X_1 X_2}{X_2 X_1} \]
Aplicada en nuestro caso, esta fórmula se reduce a:
\[
\begin{vmatrix}
1 & r_{12} & \cdots & r_{1n} \\
\vdots & 1 & \cdots & r_{2n} \\
& \vdots & \ddots & \vdots \\
r_{m1} & r_{m2} & \cdots & 1
\end{vmatrix} = \Delta_{1,2,\ldots,n}
\]
Análogamente, se tiene:
\[
[Volumen (OQ' \cdot X_1, \ldots, X_n)]^2 = \Delta_{1,2,\ldots,n}
\]
Atendiendo al volumen de un $(n+1)$-paralelepípedo se obtiene multiplicando el volumen de su base, que es un n-paralelepípedo (de la variedad $\omega_1 = \{X_1, \ldots, X_n\}$), por su altura, que es aquí $\Delta_{1,2,\ldots,n}$. Esto no es más que la extensión de la regla según la cual el volumen de un 3-paralelepípedo (o paralelepípedo, del espacio de 3 dimensiones) se obtiene multiplicando el área de su base (que es un 2-paralelepípedo o paralelogramo en el lenguaje común), por su altura. Se tiene pues:
\[
\Delta_{1,2,\ldots,n} = \Delta_{1,2,\ldots,n} \]

y por consiguiente:
\[
R^2 = 1 - \frac{\Delta_{1,2,\ldots,n}}{\Delta_{1,2,\ldots,n}}
\]
El coeficiente de correlación múltiple R, posee la propiedad fundamental siguiente:
Cuando se aumenta el número n de los datos, R no puede disminuir.

En efecto, si se agrega un $(n+1)$-ésimo dato X_{n+1}, que forma con los n primeros una variedad de $n+1$ dimensiones, $\Delta_{1,2,\ldots,n}$, la distancia $\Delta_{1,2,\ldots,n}$ de O a $\{X_1, X_2, \ldots, X_n\}$ será menor (o igual) que la distancia $\Delta_{1,2,\ldots,n}$ de O a $\{X_1, X_2, \ldots, X_n, X_{n+1}\}$ (véase Fig. 3). Esta propiedad es sólo la extensión del hecho de que la distancia de un punto a un plano (variedad de 2 dimensiones) es el mínimo de las distancias de este punto a todas las rectas (variedades de 1 dimensión) de este plano.

El cálculo de R^2 es evidentemente fundamental (y primordial) para la aplicación de la previsión estadística, y es por ello que se debe comenzar, pues su valor nos dirá si vale la pena comenzar el cálculo de los coeficientes de regresión. R tiene en cierta manera el grado de confianza que se puede tener en la previsión. De un modo preciso, $\sqrt{1 - R^2}$ es el error típico, y de él se puede deducir (suponiendo "normal" la distribución del error), la probabilidad de que un error dado no sea sobrepasado (se sabe que la regla práctica es que el error típico no es sobrepasado más que una vez sobre tres).

El grado de dificultad del cálculo de R^2, es el del desarrollo de un determinante de orden $(n+1)$, es decir, que se expresa por el factorial $(n+1)!$ Aumenta pues de manera exponencial con n.

En los cálculos citados en su publicación, T. E. W. Schmidt ha utilizado "The methods of the characteristics functions, que es el empleado para el cálculo de los niveles de energía del átomo, en Mecánica Cuántica. Con un admirable paciencia ha podido llevar los cálculos hasta el fin, para el caso de $n = 12$. Pero estos cálculos son muy laborosos y el autor cita su esperanza en las nuevas máquinas de calcular electrónicas, para continuar las aplicaciones. Me propenso, sin embargo, mostrar aquí que — al menos en el caso que nos ocupa — las posibilidades del cálculo puramente humano no están todavía agotadas, y que el método de ortogonalización que es el método de ortogonalización conocido, como en la Geometría de los espacios de Hilbert con el nombre de procedimiento de ortogonalización de Schmidt permite obtener un excelente valor de R^2 con cálculos muy simples.

7. EL PROCEDIMIENTO DE ORTOGONALIZACIÓN DE SCHMIDT

El problema consiste en pasar, por una transformación lineal, de la base de los datos:
\[
X_1, X_2, \ldots, X_n,
\]
que es cualquiera, a una base orthonormal
\[
Y_1, Y_2, \ldots, Y_n,
\]
es decir, tal que:

\[Y_i Y_j^* = \begin{cases} 0 & \text{si } i \neq j \text{ (ortogonalidad)} \\ 1 & \text{si } i = j \text{ (normalidad)} \end{cases} \]

Es algo así como (en Geometría elemental) pasar de coordenadas obli-
neas a coordenadas ortogonales.

Hay evidentemente un gran número de maneras de hacerlo. El pro-
cedimiento de Schmidt consiste en elegir como punto de partida uno
cualquier de los vectores de base (normalizado), digamos: \(X_1 \), y en
fijar un orden de sucesión.

Entonces, el cálculo se va a desarrollar de una manera sistemática, y
— hechos importantes — los vectores de la base no intervendrán más que
sucesivamente en las ecuaciones del cambio de base.

Damos el resultado a que conduce la aplicación del procedimiento de
Schmidt a nuestro problema.

Las primeras ecuaciones de la transformación son las siguientes:

\[
\begin{align*}
Y_1 &= X_1 - \frac{X_1}{\sqrt{1 - r_{12}^2}} X_2 \\
Y_2 &= \frac{(r_{23} - r_{21} r_{13}) X_3 - (r_{21} - r_{23} r_{13}) X_1 + (1 - r_{12}^2) X_2}{\sqrt{(1 - r_{12}^2 - r_{13}^2 - r_{23}^2 + 2 r_{12} r_{13} r_{23})}}
\end{align*}
\]

o sea:

\[
\begin{bmatrix}
Y_1 \\
Y_2
\end{bmatrix} = \begin{bmatrix}
X_1 & 1 \\
X_2 & r_{12}
\end{bmatrix}
\begin{bmatrix}
x_1 \\
x_2
\end{bmatrix} + \begin{bmatrix}
1 \\
0
\end{bmatrix}
\]

La ley general de formación de estas ecuaciones se obtiene así. Con-
sideremos el determinante operacional construido sobre el determi-
nante \(\Delta_{123...n} \) de los coeficientes de correlación:

\[
\Delta_{123...n} = \begin{vmatrix}
1 & * & * & * \\
* & r_{12} & r_{13} & r_{14} \\
* & r_{21} & 1 & r_{24} \\
* & r_{31} & r_{32} & 1 \\
* & r_{41} & r_{42} & r_{43} & 1 \\
\end{vmatrix}
\]

y que se puede escribir de una manera más condensada:

\[
\Delta_{1,2,...,n} = \begin{bmatrix}
X_1 & 1 & * & * & * \\
X_2 & r_{12} & 1 & * & * \\
X_3 & r_{21} & r_{23} & 1 & * \\
X_4 & r_{31} & r_{32} & r_{34} & 1 \\
\end{bmatrix}
\]

El símbolo abstracto * (asterisco) puede ser reemplazado por no im-
porta qué sistema de valores concretos.

Por ejemplo, si se hace:

\[
* = 0
\]

se obtiene:

\[
\Delta_{1,2,...,n} = \Delta_{1,2,...,n}
\]

Sustituyamos ahora a los asteriscos por los vectores de base \(X_1, X_2, X_3, \ldots X_n \).

Se obtiene el determinante:

\[
\Delta_{1,2,...,n} (X_1, X_2, X_3, \ldots)
\]

Suprimamos la primera línea, y en el cuadro resultante, tomemos suce-
sivamente los determinantes "en esquinas", a partir del ángulo o esqui-
na superior izquierda.

Se obtiene:

\[
\begin{bmatrix}
X_1 & 1 \\
X_2 & r_{12} \\
X_3 & r_{21} & 1 \\
X_4 & r_{31} & r_{32} & 1 \\
\end{bmatrix}
\]

que son precisamente los numeradores de las fórmulas de transformación
de las \(X \) en \(Y \), pero con alternancia de signo.

Un vez obtenida de esta manera una base orthonormal \((Y_i) \), la inó-
gnia \(DC \) se expresa por medio de esta base, por la ecuación vectorial:

\[DC = \sum_{i=1}^{n} b_i Y_i + Z_n \]

donde \(Z_n \) es ortogonal a todos los \(Y_i \):

\[Z_n Y_i = 0 \quad \text{para toda } i = 1, 2, \ldots, n \]
Los coeficientes de regresión a_i (de Y_i en relación a X_k) son iguales a los coeficientes de correlación simples de Y_i con las X_k, es:

$$
\rho_{Y_i} = \rho_{Y_i} X_k \quad (i = 1, 2, \ldots, n)
$$

El determinante $A_{1,2,\ldots,n}$ está reducido a su forma diagonal:

$$
\begin{bmatrix}
1 & 0 & 0 & 0 & \cdots & 0 \\
0 & 1 & 0 & 0 & \cdots & 0 \\
0 & 0 & 1 & 0 & \cdots & 0 \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & 1 & \cdots & 1
\end{bmatrix}
$$

Y el determinante $A_{1,2,\ldots,n}$ se escribe:

$$
A_{1,2,\ldots,n} = \begin{bmatrix}
1 & \rho_{X_1} & \rho_{X_2} & \cdots & \rho_{X_n}
\end{bmatrix}
\begin{bmatrix}
1 & 0 & 0 & \cdots & 0 \\
\rho_{X_1} & 1 & 0 & \cdots & 0 \\
\rho_{X_2} & 0 & 1 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
\rho_{X_n} & 0 & 0 & \cdots & 1
\end{bmatrix} = 1 - (\rho_{X_1}^2 + \rho_{X_2}^2 + \cdots + \rho_{X_n}^2)
$$

De donde, por consiguiente:

$$
R_k = \rho_{X_1} + \rho_{X_2} + \cdots + \rho_{X_n}
$$

En función de la base de los datos (X_k), los que se determinan por el proceso siguiente. Apliquemos el determinante operacional $A_{1,2,\ldots,n}$ al sistema de los coeficientes de correlación ρ_{X_k} de la incognita X_k con los datos X_k. Se obtiene:

$$
A_{1,2,\ldots,n} = \begin{bmatrix}
1 & \rho_{X_1} & \rho_{X_2} & \cdots & \rho_{X_n}
\end{bmatrix}
\begin{bmatrix}
\rho_{X_1} & 1 & \rho_{X_2} & \cdots & \rho_{X_n} \\
\rho_{X_2} & \rho_{X_1} & 1 & \cdots & \rho_{X_n} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
\rho_{X_n} & \rho_{X_2} & \rho_{X_1} & \cdots & 1
\end{bmatrix} = 1 - (\rho_{X_1}^2 + \rho_{X_2}^2 + \cdots + \rho_{X_n}^2)
$$

Utilicemos el procedimiento "en esquina" ya mencionada. Se presentan sucesivamente:

$$
D_{1,2} = [\rho_{X_1} \rho_{X_2}]; \quad D_{1,3} = \begin{bmatrix}
\rho_{X_1} & 1 \\
\rho_{X_2} & \rho_{X_3}
\end{bmatrix} ; \quad D_{1,4} = \begin{bmatrix}
\rho_{X_1} & 1 & \rho_{X_3} & \rho_{X_4}
\end{bmatrix} ; \quad \text{etc.} ...
$$

y se tiene para R_k el desarrollo:

$$
R_k = \frac{D_{X_k}}{1 + D_{X_k} + \frac{D_{X_k}}{A_{1,2}} + \frac{D_{X_k}}{A_{1,2,3}} + \cdots + \frac{D_{X_k}}{A_{1,2,\ldots,n}}}
$$

Los razonamientos siguen siendo válidos cuando $n \to \infty$, y entonces:

$$
R_k = \lim_{n \to \infty} R_k
$$

se encuentra desarrollado en serie. Sabemos que esta serie es convergente, pero no sabemos nada a priori acerca de la rapidez de la convergencia, lo que sin embargo es esencial desde el punto de vista de las aplicaciones numéricas. Pero esta rapidez depende evidentemente del orden en el cual se eligen las X_k, y en el procedimiento de Schmidt, este orden queda a nuestra discreción. Vamos a mostrar que eligiendo convenientemente este orden, se obtiene en la práctica una convergencia rápida.

8. ENSAYO NUMÉRICO.

T. E. W. Schuman se ha propuesto calcular la presión barométrica en un punto O, al día $J-1$, conociendo la presión barométrica al día J en 12 puntos de una circunferencia de centro O. Para esto ha determinado los coeficientes de correlación entre Q_k, presión en O y los 12 puntos: I, II, ..., XII, de la circunferencia, y los coeficientes de correlación de esos 12 puntos entre sí. Ha tratado luego el conjunto de los datos por "The Methods of the characteristic functions" y ha limitado la aproximación a un pequeño número de términos.

He aquí la marcha de sus aproximaciones:

1º aproximación: $R_k = 0.7257$

2º aproximación: $R_k = 0.7262$

3º aproximación: $R_k = 0.7476$

4º aproximación: $R_k = 0.8089$

Como se ve, esta marcha es muy irregular y es sobre todo entre la 3º y la 4º aproximación que se ha realizado un aumento notable. De manera que no se sabe si nos hemos aproximado ya al límite o si estamos todavía muy alejados de él.

Hemos retomado los mismos datos de Schuman y los hemos tratado por el procedimiento de ortogonalización de Schmidt. Ahora bien, no ya el conjunto de los datos, pero sí solamente con un pequeño número de esos datos, precisamente elegidos, se obtiene muy rápidamente y con cálculos ruidosos, la 4º aproximación de Schmidt, y esto, por una marcha regular de la aproximación.

Damos primeramente el resultado:

1º término: 0.5476

2º término: 0.7956

3º término: 0.8070

4º término: 0.8088

5º término (sin modificación)

La similitud de estos números nos deja plantear que casi se ha alcanzado el límite con 4 términos de la serie. En la información de
Schmidt (12 puntos) había, pues, datos superfluos que en consecuencia era inútil arrastrar en los cálculos, cuya complicación crece muy rápidamente con el número de datos.

Diganos ahora unas palabras sobre las razones que han guiado nuestra elección.

Primero, podemos consignar que el primer término sea mayor que todos los siguientes, eligiendo el punto 1, de modo que:

\[r_{1x} \approx \frac{1}{2} \]

Después, para el cálculo del punto 2, es necesario tomar un número aleatorio la menos correlacionado posible con \(x_1 \). En efecto, cuando se desea continuar una información obtenida de una fuente 1, hay que dirigirse a una fuente 2 que tenga la menor relación posible con la anterior.

Estas consideraciones nos han llevado a elegir entre los datos de Schuman los puntos:

\[1 = X \quad y \quad 2 = III \]

y este nos ha dado:

\[R^2 = 0.7956 \]

Luego de las aproximaciones han sido obtenidas ajustando los puntos:

\[3 = I \quad y \quad 4 = VII \]

9. CONCLUSIÓN SOBRE ESTE ENSAYO

El valor de \(R^2 \) obtenido por Schuman corresponde a un coeficiente de correlación:

\[R = 0.90 \]

Se trata pues de una correlación sumamente grande. Schuman hace notar que los mejores previsionistas están lejos de alcanzar una correlación parecida, en la prevención de la presión, con 24 horas de anticipación.

Podríamos ahora formularnos la siguiente pregunta: ¿El número de Schuman puede ser aumentado todavía?

Evidentemente, no es persiguiendo las aproximaciones de más en más precisas de Schuman, que se lo aumentará mucho. Ni tampoco tomando más puntos sobre la circunferencia de centro \(O \).

En el lenguaje geométrico podemos decir, en efecto, que los números aleatorios correspondientes a los puntos de esta circunferencia forman una variedad muy vecina de una variedad lineal de 4 dimensiones. Tomar más de 4 números es, grosso modo.

Si se quiere aumentar \(R \), será necesario echar mano de nuevos datos, que sean exteriores a esta variedad lineal. Sugerimos por ejemplo:

a) la presión en puntos avanzados en otra circunferencia.

b) la presión en épocas anteriores al día \(J \).

c) la altitud de la isobara 500 mb, por encima del punto \(O \).

d) otros elementos meteorológicos como la temperatura o la altitud de la troposfera, etc.

Nuestro método de aproximación nos permitirá introducir solamente datos útiles y en consecuencia condensar el cálculo sin alterar nunca.

Otra reflexión se presenta al espíritu.

Sobre la circunferencia de centro \(O \), hay dos puntos (X y III) que dan por ellos solos todo el esencial de la aproximación. Esto nos llega a concebir que existan en Meteorología puntos estratégiacos cuyas observaciones son más sensibles que otras para la prevención. La investigación sistemática de estos puntos podría influir sobre la organización de las redes.

En fin, formulémonos esta última y crucial pregunta: ¿Es posible, aumentando la información, obtener valores de \(R \) tan vecinos de la unidad como se desea?

Vamos a responder, a la luz de la teoría de las funciones aleatorias.

10. LAS FUNCIONES ALEATORIAS PREVISIBLES

Decimos que la función aleatoria \(X \) es previsible, cuando el número aleatorio \(X' = x/t \) (\(t > 0 \)) puede expresarse casi con certeza en función lineal de los números aleatorios \(X_n \) (\(-\infty < a < 0 \)): (ver Fig. 4).

\[R = 0 \]

La condición necesaria y suficiente de previsibilidad es la siguiente:

El coeficiente de correlación múltiple \(R_m \) entre \(X' \) y los n números aleatorios:

\[X_1, X_2, \ldots, X_n, X_n \]

tiene valor 1 cuando \(n \to \infty \).

Notamos a continuación que existen funciones aleatorias imprevisibles. Así, sea la función aleatoria de conexión (o conexión) definida por el coeficiente de auto-corrugación siguiente:

\[\{ r(h) = 0 \}

Se tiene entonces evidentemente, cualquiera sea \(n \):

\[\Delta_{1,2,\ldots,n} = \Delta_{1,2,\ldots,n} = 1 \]

y por consiguiente:

\[R = 0 \]

Esto quiere decir que el conocimiento del pasado —por más complejo que se lo pueda concebir— no tiene, en este caso, alguna influencia sobre el conocimiento del porvenir. Este es el caso de los juegos de azar teóricos, en los cuales de nada sirve para prever la jugada próxima el conocer las jugadas anteriores.
Existen también funciones aleatorias parcialmente previsibles. Tal es la función aleatoria de elementos independientes definida de la manera siguiente:

\[X_{t+h} = X_t + Z \]

con

\[Z \perp X_t = 0 \]

El coeficiente de autocorrelación de esta función es:

\[r(t, t+h) = \frac{z(t)}{\sigma(t)} \]

siendo \(z(t) \) su deviación típica.

de quedaría que:

\[R^2 = r^2_{1,2} \]

Es decir, que esta vez la información recibida del pasado interviene sólo por el último valor alcanzado: \(X_t \). Todas las informaciones anteriores a ésta son irrelevantes.

En fin, muestra que existen funciones aleatorias previsibles. Tal es el caso de la función aleatoria definida por el coeficiente de autocorrelación:

\[r(h) = \cos \frac{\pi h}{d} \]

Se tiene:

\[r_{12} = \cos \frac{\pi}{d} \]

\[r_{21} = \cos \frac{\pi}{d} + \cos \frac{\pi}{d} \]

\[r_{11} = \cos \frac{\pi}{d} \]

De donde:

\[R^2 = \cos^2 \frac{\pi}{d} + \cos^2 \frac{\pi}{d} + 1 = R^2 \]

Se tiene, pues, casi con certeza:

\[\Sigma^2 = X_{t+1}^2 = a^2 X_t^2 + a^2 X_{t+1}^2 \]

Esta función elemental es pues previsible, con tal de que se conozcan solamente dos valores anteriores; los otros son supérflicos. Todos sus valores están situados en un plano del espacio de Hilbert.

He mostrado, de una manera general, que las funciones aleatorias previsibles con las funciones aleatorias anátomicas, es decir, las que son desarrollables en serie de Taylor.

Tales funciones existen en la Naturaleza, como lo muestra el ejemplo numérico siguiente que he calculado con los datos de Schuman.

Sean 12 puntos repartidos regularmente sobre una circunferencia. Considerando la presión barométrica al día \(J \), en 11 de estos puntos, deducir de aquí la presión barométrica al mismo día \(J \), en el 12\(\text{°} \) punto.

Elijiendo los puntos siguientes entre los datos de Schuman:

Incógnita: \(\Sigma^2 = X_{t+1} \); Datos: \(1 = X_1 \); \(2 = X_2 \); \(3 = X_3 \);

he obtenido:

\[R = 0.9988 \]

Esta correlación tan cercana a la unididad, pone fuera de duda el carácter anáptico de la presión, en el espacio. Esto corresponde por otra parte al hecho de que se pueden interpolar y extrapolar las isobáricas con una gran exactitud, lo que los metereólogos expresan diciendo que la presión barométrica es un elemento anáptico.

Pero lo más importante, desde el punto de vista de la posibilidad de la prevención, es saber si la presión barométrica, ya reconocida como anáptica en el espacio —es también anáptica en el tiempo.

Hoy razonal para creer a priori que sí, pues si los movimientos de la presión se asumen a curvas, debe haber una analogía estrecha de estructura entre su distribución en el espacio y su evolución en el tiempo.

Sería como fuero, actualmente hemos hecho la prueba de la anáptica de la presión barométrica en el tiempo, volviéndonos de la escala abiótica.

Gracias a las observaciones barométricas del Observatorio Central de Buenos Aires (Villa Ortúzar) y el concurso de la red del Servicio Meteorológico Nacional de la República Argentina, hemos podido trazar un número bastante grande de curvas de autocorrección.

Cada una está estabilizada para un mes; representa sobre medidas horarias y se basa, pues, sobre 720 (o 744) anuncios. Todas estas curvas tienen características comunes y la anáptica puede ser probada sobre una cualquiera de ellas.

Demos solamente un ejemplo.

Proponiendo para el mes de julio de 1942, calcular la presión futura \(\Sigma^2 \) (con 1 H de anticipación) conociendo la presión en el instante inicial (1 = 0H) y 1H anteriormente (2 = -1H). Los datos necesarios, deducidos de la curva de correlación son los siguientes:

\[\left\{ \begin{array}{l}
 r(h) = r(1H) = 0.9975 \\
 r(h) = r(2H) = 0.9922
\end{array} \right. \]

de donde:

\[r_{12} = 0.9975 \]
\[r_{21} = 0.9975 \]

El coeficiente de correlación múltiple que mide la certeza con la cual puede ser prevista \(\Sigma^2 \), tiene por cuadrado:

\[R^2 = r_{12} + r_{21} - r_{12} r_{21} \]

Con los datos precedentes, dicho coeficiente es igual a:

\[R = 0.9984 \]

Es decir, tan vecino de la unidad como el coeficiente de correlación múltiple concerniente a observaciones simultáneas hechas en el espacio.

Esta conexión muy estrecha, corresponde a una desviación tipo (deducida de \(R \)) igual a:

\[0.05 \text{ milibar} \]

la cual es muy inferior a la precisión de las mediciones.
Es evidente que la previsión de la presión barométrica en el intervalo de una hora no tiene por sí misma ningún interés práctico directo; y no es esto lo que hemos investigado citando este ejemplo. Lo que hemos querido hacer, es mostrar por un estudio minucioso, y lo más fino posible (quantum de tiempo igual a 1H) de la curva de autocorrelación, en la proximidad del punto \(h = 0 \); \(r(h) = 1 \), que la previsión barométrica era analítica en el tiempo, y servirnos luego de esta propiedad para establecer las bases de la previsión numérica en un intervalo cualquiera. El método de la exploración del infinitesimalmente pequeño no es nuevo en ciencias: la observación de los microbios en el microscopio permite luego combatir las epidemias.

11. COMPARACIÓN DE LA PREVISIÓN LOCAL Y DE LA PREVISIÓN SINÓPTICA

Los meteorólogos han reconocido, desde Le Verrier, que la previsión sinóptica del tiempo es muy superior a la previsión local, y es esta constatación la que ha conducido a la organización de las redes meteorológicas y al intercambio internacional de informaciones.

Sin embargo, se puede proponer la siguiente cuestión: Si la presión posee, en el tiempo, el mismo carácter de analicidad que en el espacio, ¿puede la previsión local alcanzar el mismo grado de certeza (tedesca) que la previsión sinóptica? Si así fuera, se podrían establecer tablas de previsión en cada punto, de la presión barométrica, análogas a las Anuarias de las Marées. Cada observatorio podría trazar no la presión observada, sino la presión prevista (deducida de las tablas), así como hoy trazamos no la presión bruta sino la presión afectada de diversas correcciones (a cero grado, gravedad normal, nivel del mar). De este modo, el previsor o estaría más que establecer un diagnóstico sobre las cartas automáticamente previstas por las tablas. La separación de estas dos operaciones, diagnóstico y pronóstico, sería así completa.

¿Por qué este sueño no es prácticamente realizable? Porque, sencillamente, no ocurre algo análogo a lo que los astrónomos han encontrado en la aplicación de la Mecánica Celeste desde que han sido llevados a estudiar el problema de los tres cuerpos. Las soluciones obtenidas en forma de desarrollos en serie son, o divergentes, o convergentes sólo en un intervalo limitado, y aun en este caso, lentamente convergentes. Aquí, el desarrollo del coeficiente de correlación múltiple siempre converge, pero con una lentitud tal que no se vislumbra cómo las máquinas de calcular podrían acelerarlo, admitiéndose también que la precisión y la frecuencia de las mediciones puedan ser aumentadas indefinidamente.

Prácticamente, parece difícil superar los valores siguientes del coeficiente de correlación múltiple a 12H y 24H de plazo:

\[
R(12) = 0.925 \\
R(24) = 0.768
\]

lo que corresponde a los errores típicos respectivos:

\[
e(12) = 1.6 \text{ milíbar} \\
e(24) = 5.0 \text{ milíbar}
\]

Por consiguiente, es necesario para obtener resultados de aplicación fructífera, conjugar el punto de vista local con el punto de vista sinóptico. Evidentemente, es en esta vía (la vía ortodoxa de la Meteorología moderna) en la que estamos orientados, y vamos a indicar brevemente el esquema del método y citar algunos resultados obtenidos.

12. EMPLEO DE LA CORRELACIÓN ESPACIO-TEMPORAL

He aquí la forma en que la hemos realizado. El punto de partida es la elección de una base de operaciones. Pues no podemos (por razones de complejidad) asociar en números dos a dos todos los puntos de la red, lo que correspondería al grado de complicación \(\frac{n}{2} \) para n estaciones.

Esta elección debe ser dictada por razones físicas y necesitar por consiguiente una idea preconcebida, sugerida por el estudio de la carta diaria del Tiempo. Corresponde a la idea de que existen —como por lo general ocurre en todo— puntos estratégicos en Meteorología. La base, que designaremos por O, debe ser elegida entre ellos (ver Fig. 5).

![Fig. 5](image).

Evidentemente, no se debe creer que la base O pueda ser elegida definitivamente y que sea válida para una extensión cualquiera de territorio. En realidad, su estabilidad está dirigida por la noción de regímenes meteorológicos. De manera que ella no vale sino para una zona sometida a un mismo régimen, y durante la duración de este régimen. Esta limitación es por otra parte suficientemente amplia: excede un territorio tan grande como el de la República Argentina y el espacio de tiempo de un mes.

Sea ahora \(M \) una estación corriente de la red. El problema que proponemos es prever (en el interior de un régimen meteorológico establecido, conocido y determinado) la presión (incógnita):

\[
\Delta p = X/M + t
\]

del punto \(M \) y en la época (futura): \(t + h \), conociendo las presiones \(X_1 = X/M + 1 \) y \(X_2 = X/0.4 \)
del punto \(M \) y en la base O, en el instante (actual) t.
Este problema, bajo la forma estadística, viene a determinar los coeficientes de regresión de Y en X_1 y X_2. Sea todavía la ecuación de regresión:

$$ Y = a_1 X_1 + a_2 X_2 $$

Los coeficientes de regresión a_1 y a_2 se calculan, como es sabido, en función de los tres coeficientes de correlación que ligan la incógnita y los datos entre sí. Estos coeficientes de correlación — que tienen significado físico diferente — son los siguientes:

a) $$ r (O, t; H, t) = r_{21} $$

es una correlación en el espacio, en el mismo instante

b) $$ r (H, t; H, t + h) = r_{12} $$

es una correlación en el tiempo, en el mismo punto. La hemos llamado particularmente autocorrelación.

c) $$ r (O, t; H, t + h) = r_{22} $$

es una correlación diferida (en el tiempo y en el espacio).

Finalmente, el valor de la previsión obtenido con el empleo de la ecuación de regresión se mide por el coeficiente de correlación múltiple $R(M)$, cuyo cuadrado tiene por expresión:

$$ R^2 (M) = 1 - \frac{\Delta_1}{\Delta_2} $$

Esta claro que la búsqueda debe comenzar por determinar este coeficiente de correlación múltiple, pues solamente si alcanza un valor suficientemente próximo a la unidad valdrá la pena pasar al cálculo de los coeficientes de regresión, y aplicar prácticamente la ecuación de regresión obtenida.

Para el mes de julio de 1942 (considerado como formando parte de un solo régimen), y el conjunto del territorio de la República Argentina (considerado como estando sometido a un mismo régimen), hemos obtenido coeficientes de correlación múltiples al plano $h = 24$ H, muy próximos a la unidad.

En términos prácticos, esto significa que estando en posición de los coeficientes de regresión previamente calculados correspondientes al régimen de ese mes (y esto se obtiene por el estudio retrospectivo de los documentos del pasado), fue posible, por medio de operaciones de cálculo extremadamente simples e instantáneas, establecer con 24 horas de anticipación una carta de isobaras muy consistente sobre la República Argentina (Véase Cuadro 1).
Cuadro II. — Función de correlación r (h) para las presiones barométricas de la ciudad de Buenos Aires (Observatorio Central de Villa Olimpia).

Mes de julio de 1942.

Intervalo de tiempo en horas.

r (0)	1.000
r (1)	0.9975
r (2)	0.992
r (3)	0.986
r (4)	0.978
r (5)	0.971
r (6)	0.963
r (7)	0.954
r (8)	0.945
r (9)	0.936
r (10)	0.924

Gráfica II. — Función de correlación r (h) para las presiones barométricas del Observatorio Central de P. Olimpia. Tipo de día 1940-1946.

15. CONCLUSIONES GENERALES

La teoría de los espacios de números aleatorios coloca un verdadero lugar el problema del estudio numérico del medio atmosférico, con vistas a descubrir leyes y utilizarlas luego para la Previsión.

Las leyes físicas que rigen a la atmósfera no pueden, en efecto, salvo casos particulares limites, tener otra expresión numérica que las correlaciones de los elementos meteorológicos entre sí y en diversos instantes.

La climatología se ha contundido hasta el presente con el cálculo de los valores probables (o normales), y, en una u otra forma, con el de las desviaciones de estas normales. Es evidente, a la luz de las consideraciones que acabamos de exponer, que esto no ilustra en nada sobre la manera como está organizada la atmósfera, sobre los físicos de causalidad que ligan entre sí a los diferentes fenómenos en diversos lugares y en diversas épocas.

Sería, pues, altamente deseable realizar bajo los auspicios de la Organización Meteorológica Mundial, a partir de las observaciones seriadas recogidas en las últimas décadas, una vasta operación mundial, para lo cual proponemos el nombre de "Operación Conex", que consistiría en:

1. — Calcular para cada elemento meteorológico medible, las autocorrelaciones entre los valores de este elemento, en diversos intervalos de una gama de intervalos juiciosamente elegida.

2. — Calcular las correlaciones entre los elementos meteorológicos, asociados por pares.

Se puede comparar esta Operación Conex a una vasta triangulación física de la atmósfera, la cual, así como las operaciones geodésicas han permitido determinar la figura fija de la Tierra, permitirá conocer la estructura física de la atmósfera y las leyes que la rigen. Este conocimiento permitirá ipso facto, la resolución de todos los problemas que puedan presentarse en materia de Meteorología, y en particular el de la Previsión del Tiempo a corto y a largo plazo, dentro de los límites y en la forma en que este problema ha sido sugerido por la Meteorología. Sabemos hoy día que han nacido conceptos parecidos, casi independientemente en el problema de las Telecomunicaciones.

En lo que a mí concierne, me ha parecido que los conceptos sugeridos de la Meteorología debían, después de haber sido abstractados y puestos en forma matemática, ser de nuevo proyectados sobre su dominio original para juzgar de su valor práctico y servir a las aplicaciones. La ocasión me ha sido dada en la República Argentina, donde he podido, desde 1947, disponer de datos de observación.

Así, este trabajo que, todavía inédito, en la fecha antes mencionada, pertenecía al dominio de la teoría, es hoy, en 1951, gracias a los trabajos hasta ahora realizados en la República Argentina, sostenida por una base experimental bastante respetable.

De allí que hayamos decidido darla a publicidad. Ella no es por otra parte sino el preludio de otras publicaciones que revelarán más detalladamente los resultados obtenidos y los métodos prácticos empleados.

Estos resultados que anunciamos, han sido alcanzados gracias a la colaboración de mi colega el doctor R. Dr. Mañ, rápidamente ganado por la causa de la Mecánica Aleatoria, ha unido su larga experiencia a la mía, de manera que hemos mejorado paralelamente la comprensión del Cálculo Aleatorio para los utilizadores eventuales, y puesto prácticamente en obra sus aplicaciones a la Meteorología de la República Argentina.

AGRADECIMIENTOS

En ocasión en que este trabajo se publica, quiero expresar mi agradecimiento al Director General del Servicio Meteorológico Nacional, Ca.
pitín de Fragata D. Carlos Núñez Monasterio, y al Director de Investigaciones Meteorológicas, Doctor D. Martín S. Cappelletti, por las facilidades acordadas y por su estimulante apoyo.

De particular manera, deseo también recordar y agradecer cuanto debo a mi precursor T. E. W. Schuman, de quien he tomado los datos ya elaborados en forma de coeficientes de correlación, relativos a África del Sur; y a mis colegas, el Ing. D. Enrique Samatán y el Dr. D. Emiliano A. M. Machado, por la eficaz ayuda recibida al planificar y organizar las operaciones de cálculo.

BIBLIOGRAFÍA

SOBRE LA UTILIZACION DE DIAGRAMAS ENALPICOS

EN METEOROLOGÍA

Por: ROBERTO N. QUINTANA

Resumen.— En los últimos tiempos algunos autores han incluido en sus trabajos de índole meteorológica la función entalpía, cuya aplicación ya estaba generalizada en otras ramas de la técnica. Por tal causa se ha considerado de interés redactar este artículo la utilización de diagramas entalpicos en los estudios termodinámicos de la atmósfera, como complemento de los diagramas adiabáticos y psicrométricos más conocidos.

Résumen.— Dans ces derniers temps quelques auteurs ont introduit dans leurs travaux météorologiques la fonction entalpía, dont l’application s’était déjà généralisée dans d’autres branches de la technique. C’est pour cette raison qu’on a considéré intéressant, de point de vue théorique, de traiter dans cet article l’utilisation de diagrammes entalpicos dans les études thermodynamiques de l’atmosphère comme complément des diagrammes adiabáticos et psicrométricos les plus comunes.

1. CONSIDERACIONES TEÓRICAS

Sabemos que tomando como variables independientes la temperatura y el volumen específico, la expresión energética general que involucra los dos principios fundamentales de la Termodinámica es la siguiente (1):

\[dQ = T \, dS = c_v \, dT + \Delta T \left(\frac{\partial p}{\partial T} \right) \frac{dV}{V} \]

Si en cambio operamos en función de \(T \) y \(p \):

\[dQ = T \, dS = c_v \, dT + \Delta T \left(\frac{\partial p}{\partial T} \right) \frac{dV}{V} \]

donde: \(Q = \) cantidad de calor intercambiada, \(T = \) temperatura absoluta, \(S = \) entropía, \(c_v \) y \(c_v \) = calores específicos a presión \(y \) a volumen constante, \(A = \) equivalente calórico del trabajo.

Aplicando estas expresiones a los gases perfectos, para los cuales el coeficiente térmico de presión \(\frac{1}{p} \left(\frac{\partial p}{\partial T} \right)_V \) y el de dilatación a presión constante \(\frac{1}{V} \left(\frac{\partial p}{\partial T} \right)_T \) valen \(\frac{1}{T} \), obtenemos:

\[dQ = T \, dS = c_v \, dT + \Delta p \, dv = c_v \, dT - A_p \, dv \]

en la que \(c_v \, dT \) es la energía interna y \(A_p \, dv \) la entalpía del sistema, que queda expresada, para los gases perfectos, como una cantidad de calor a presión constante.

* Ingeniero Civil. Jefe del Departamento Estructural y Servicios Complementarios de Investigación del S. M. N.
Si consideramos ahora un sistema circulante, influenciado por la existencia de un campo potencial exterior (gravitación), la ecuación general de la energía puede ponerse en la forma:

\[dU + Ad(\rho_0) + A\frac{\rho_0}{2} + Ad(\rho) ds = -dQ = 0 \]

El término \(gds \) es la variación de geopotencial por unidad de masa entre dos niveles infinitamente próximos, \(\frac{\rho_0}{2} \) la variación de energía cinética, \(Ad(\rho) \) el cambio de energía interna debido a la interacción molecular y que en los gases perfectos es solo función de la temperatura y \(\rho(\rho_0) \) la diferencial del trabajo de desplazamiento, que representa la energía puesta en juego por la fuerza necesaria para producir el escorrimiento de cada masa unitaria entre las presiones existentes en los dos niveles. La suma de estos dos términos \(U + Apg \) define la entalpia o calor total, en su forma más general.

Diferenciando:

\[dt = dU + Ad(\rho_0) = T ds - Apg ds + Ad(\rho) = T ds + Apg dp \]

expresión que coincide con la fórmula [1].

Si introducimos el exponente \(b \) de la adiabática: \(db = dU \frac{k}{k-1} dt \) válida para un gas ideal.

Se trata de una función potencial, suma de dos funciones de esa índole, y se expresa en Kcal Kg\(^{-1}\) o en Cal Kmol\(^{-1}\). Salvo casos particulares, en general no interesa determinar su valor absoluto, sino el relativo con respecto a un valor inicial elegido arbitrariamente.

Veamos algunos casos de aplicación. En un sistema adiabático con poco cambio de velocidad \(d\rho \), si la variación de entalpia en dicho proceso la expresamos como función de la variación de temperatura \(\frac{dT}{ds} = -g \rho \), puede calcularse el gradiente vertical:

\[\frac{dT}{dz} = -\frac{g}{\rho} \]

Para escorrimiento con variación despreciable de velocidad y elevación \(d\rho = dQ \), es decir es una evolución a presión constante, en la que la variación de entalpia se efectúa a costa del calor intercambiado con el medio, el cual se utiliza para atemperar la agitación de las moléculas y asegurar la expansión del fluido contra la presión exterior.

En general, en un sistema definido por dos parámetros sólo es posible determinar directamente las características estáticas del fluido (entropía, presión, etc.), pero no su característica dinámica (velocidad). Un fluido con velocidad nula o animado de una velocidad \(\alpha \), está representado por el mismo punto en los diagramas y sin embargo las posibilidades energéticas de esos dos estados son bien diferentes. La función entalpia permite determinar analíticamente esa característica dinámica, partiendo de la fórmula general:

\[A\frac{\rho_0}{2} = dQ + Ad(\rho) ds + d\rho \]

Por otra parte, al considerar la entalpia del aire húmedo se tiene en cuenta la energía existente en el vapor de agua, minutos que la llamada función de corriente \(g(\rho_2 - \rho_1) \), como lo hace Kiefer [4], sólo incluye el geopotencial y la entalpia del aire seco. Se despresta en este caso una energía que puede alcanzar hasta un 30%.

La función entalpia del aire húmedo es conservativa para todos los procesos adiabáticos, incluso los de saturación adiabática por evaporación. Es por ello de gran interés en el estudio de los procesos psicrométricos. Bleeker [4], por ejemplo, en un trabajo sobre un diagrama \(t = x^2 \), basado en estudios de Normand, plantea como ecuaciones fundamentales las siguientes:

\[c_v (t - t_e) (\rho_0 - \rho_e) = L_e (x_o - x) \]

\[c_p (t - t_e) + x c_p (t - t_e) = L_e x \]

donde: \(t \) = temperatura del termómetro seco, \(t_e \) = temperatura teórica del termómetro húmedo, es decir la temperatura más baja a que puede ser enfriado el aire evaporando agua en el mismo; a presión constante, \(t_e \) = temperatura equivalente, es decir la que alcanza el aire si se supone que todo el vapor de agua se condensa a presión constante y el calor de condensación es utilizado íntegramente para incrementar la temperatura del aire, \(c_p \) = calor específico a presión constante del vapor de agua, \(c_v \) = calor específico en presión constante del aire seco y \(x_o \) = relación de mezcla del aire saturado, a la temperatura \(t_e \).

Termodinámicamente las ecuaciones citadas por Bleeker equivalen a suponer procesos isentrópicos:

1) La evolución en el termómetro de bulbo húmedo, hasta llegar a la condición de equilibrio. Evidentemente la ecuación [2] se deduce de

\[c_p (t + x) (\rho_0 + L_e) \]

y la ecuación [3] se deduce de

\[c_v (t + x) (\rho_0 + L_e) \]

2) El proceso seguido para alcanzar la temperatura equivalente. La [3] deriva de la:

\[c_p (t + x) (\rho_0 + L_e) \]

II.-DIAGRAMAS ENTRÁLPICOS

Dado un sistema independiente, según la ley de las fases de Gibbs [4], queda definido por dos variables independientes \((x, y) \). Siempre es posible encontrar una relación de la forma

\[dP = M(x, y) dx + N(x, y, \rho) d\rho \]

concretándose el problema a saber si existe una función \(f(x, y) \) tal que

\[P = f(x, y) \].

Según el Análisis si ello se cumple, debe ser:

\[\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x} \]

siendo en tal caso \(P \) una función potencial, lo que permite el trazado de un diagrama, sobre el cual pueden dibujarse distintas curvas paramétricas.
Desde el de Hertz, numerosos diagramas se han construido con miras a su aplicación en meteorología, especialmente para el análisis de sondas (1). Los diagramas termodinámicos meteorológicos sirven para: (a) calcular cantidades de calor y trabajo, (b) establecer relaciones termodinámicas entre los parámetros que definen un sistema, (c) medir energías y determinar críticos de estabilidad y (d) medir alturas (geopotencial). Es común distinguir dos grandes grupos: los equivalentes, o que conservan las áreas con el diagrama dinámico (p,v) y los que no las conservan. Entre ellos podemos citar: el de Neuhoff (log ρ, T), el aerograma de Refsdal (T log ρ, log T) y el teñigráfico de Shaw (T, cp log ψ). Entre los seguidos, el clásico diagrama de Söhne (ρ°, T) en el que las adiabáticas resultan rectas y el de Hertz (log ρ, log T). Morán Sanamiego (1) da un método práctico para transformar un diagrama equivalente en otro.

La entalpía puede emplearse también como coordenada de diagramas que representan las propiedades y variaciones del aire húmedo. Vamos a describir someramente algunas de las combinaciones posibles de coordenadas, una de las cuales se la entalpía, para la construcción de diagramas entalpíicos aplicables en meteorología.

DIAGRAMA i-X (ENTALPÍA - RELACIÓN DE MEZCLA).

Entre los diagramas higrográficos, trazados para una determinada presión atmosférica, existen varios entalpíicos: el de Mollier (i - x), el de Ramzine (i - x), con coordenadas oblicuas a 135°, el de Mahr (i - q) y el de Höhn (i - t, con el eje de abscisas decalado de 0,24 t). De todos el más utilizado en la técnica es el primero, siendo una transformación del mismo el t - x usado en psicrometría (2).

En absisas se llevan los gramos de agua por Kg de aire seco (x) y en ordenadas las entalpías por Kg de aire seco (i). Como la entalpía de una mezcla de gases es igual a la suma de las entalpías de las componentes, eligiendo como origen el 0°C, tendremos para (1 + x) Kg de aire húmedo:

\[i = c_p t + x(L + c_v t) \]

Las isotermas son rectas de distinta pendiente para cada temperatura, lo que se deduce derivando la expresión anterior:

\[\frac{di}{dx} = L + c_v t \]

Para delimitar las zonas de aire y vapor sobrecalentado por un lado y aquella en que hay condensación por otro, se traza la curva de saturación, partiendo de \(x_0 = 0.622 \) y calculando la tensión de saturación para cada temperatura. Esta curva nos limita la validez de las isotérmicas en la zona de aire húmedo, mientras las curvas de humedad relativa constante se trazan dividiendo las isotérmicas en partes iguales y uniendo los puntos correspondientes.

Si se considera la zona a la derecha de la curva límite, la entalpía de la mezcla aire, vapor y agua, en equilibrio térmico, será:

\[i = c_p t + x_0(L + c_v t) + x_0 t \]

en la que \(x_0 \) es la masa de agua por Kg de aire seco. Derivando la ecuación anterior, obtenemos la pendiente de las isotérmicas en esta zona:

\[\frac{di}{dx} = t \]

la pendiente será:

\[\frac{di}{dx} = \frac{1}{\theta} = \frac{1}{\theta} - 0.5 \]

debido a que la interpretación general de la isotérmica a 0°, señalando la zona en que coexiste el aire seco y el agua en sus tres fases.

Para ampliar el campo de trabajo se adoptan coordenadas oblicuas y para facilitar el trazado de pendientes se acostumbra disponer una escala gráfica de tangentes en el marco del diagrama.

Si quisieramos trabajar con el diagrama para distintos niveles, es necesario trazar las curvas de saturación para cada presión.

Distintos problemas pueden resolverse en este diagrama en forma sencilla. Por ejemplo, la mezcla de dos masas de aire de condiciones dadas. El punto representativo de la mezcla se encuentra sobre la recta que une los puntos representativos de los estados iniciales y a una distancia de los extremos inversamente proporcional a las masas. Si este punto cae por debajo de la curva de saturación significa que existe condensación, indicando directamente en absisas la masa de vapor condensada.

Si se mezcla una cierta cantidad de agua (W, iW) con una masa de aire húmedo, (G, x, i) las ecuaciones de equilibrio serán:

\[G + W = G_{en} \]

\[G i + W_{iW} = G_{iW} \]

\[i_{en} = i_{W} = \frac{i_{en} - i}{\alpha_{en} - x} \]

siendo \(x_{en}, i_{en} \) las coordenadas de la mezcla.
Esta expresión da la pendiente de la recta que une los puntos representativos del aire antes y después de agregada el agua y el punto impreso, de la misma el estado de la masa de agua agregada.

Estudiemos ahora (4) las condiciones que se producen en el termómetro húmedo del psicrómetro ventilado, en el que una cantidad limitada de agua se encuentra en contacto con el aire húmedo del ambiente, el cual se supone de capacidad calorífica infinita. No repetiremos aquí, por ser muy conocido, el proceso termodinámico que permite deducir la fórmula psicrométrica clásica para psicrómetros ventilados; sólo nos referiremos a la que los norteamericanos llaman temperatura de saturación adiabática, que coincide con la temperatura isobarica de bolbo húmedo en determinadas condiciones (cuando $c_v = -\frac{d\ln T}{dT}$, siendo k el coeficiente de transmisión total entre el aire y el agua y c_v un coeficiente de evaporación, que depende de la velocidad del aire). Se supone que la evaporación se efectúa en una corriente limitada de aire que no recibe ni cede calor y a presión constante; será por lo tanto isocálérica, de acuerdo con el principio de la conservación de la energía, plantiéndose entonces la ecuación [4] en la que se introduce el signo los valores a llegar la capa límite a la saturación, situación para la cual se alcanza el equilibrio.

De la [2], con gran aproximación:

$$t_w = t_0 - \frac{I_0}{c_v} (x_0 - x)$$

de la que puede deducirse la conocida fórmula de Sprung para psicrómetros ventilados con una velocidad del aire superior a 2.5 m/s:

$$x = x_0 - 0.5 (t - t_w)$$

siendo x y t_0 las tensiones de vapor en el momento y de saturación, respectivamente.

En el diagrama $i - x$ dicha evolución se representa por una recta de pendiente $-\frac{\Delta x}{\Delta i} = t_w$, que en su intersección con la curva de saturación nos determina el estado de la capa límite. Dado que $i_w = t_w$, será paralela al eje i.

Rigorosamente, existe un aumento de entalpía, igual a la diferencia entre la entalpía que el agua ha recibido a la temperatura t_w y la que el aire ha perdido al entrar en $i = i_w$, pero como esta diferencia muy pequeña es función de la depresión del termómetro húmedo ($t - t_w$) puede despreciarse, especialmente para temperaturas bajas.

Examinemos ahora en el diagrama que nos ocupa el fenómeno de precipitación dentro de una masa de aire húmedo. Llamemos i_1 la temperatura, x_1 la relación de mezcla y t_1 la entalpía inicial del aire, t_0 y x_0 las correspondientes después de la lluvia, W la masa de agua caída, W_a la cantidad de agua evaporada (positiva o negativa, según haya evaporación o condensación), i_1 temperatura del agua que cae, y t_1 temperatura del agua que escurre. Podemos plantea...
Si se considera un gas perfecto, caso del aire sin mayor error, las fórmulas generales se simplifican basándose en la ecuación de estado y en las expresiones que ligaban los calores específicos entre sí y con la temperatura:

\[dS = c_v \frac{dT}{T} - AR \frac{dp}{\rho} = c_v \frac{dT}{T} + AR \frac{dp}{\rho} \]

\[S_2 - S_1 = \alpha \log \frac{T_2}{T_1} + b (T_2 - T_1) - AR \log \frac{\rho_2}{\rho_1} \]

\[= (a - AR) \log \frac{T_2}{T_1} + b (T_2 - T_1) + AR \log \frac{\rho_2}{\rho_1} \]

Teniendo en cuenta que para los límites de temperatura que se encuentran en la atmósfera, el calor específico puede considerarse casi constante:

\[S_2 - S_1 = a \log \frac{T_2}{T_1} - AR \log \frac{\rho_2}{\rho_1} = (a - AR) \log \frac{T_2}{T_1} + AR \log \frac{\rho_2}{\rho_1} \]

Estas fórmulas permiten el trazado de las curvas paramétricas más importantes (isobaras, isocoros). El diagrama \(i - S \) es equivalente, es decir igual área, al diagrama dinámico \(i - \rho \). Además de sus ventajas por ser entésico, facilita la representación de las transformaciones adiabáticas, que son retas paralelas al eje de ordenadas. En este caso la diferencia de ordenadas nos muestra el trabajo de circulación (Wdp) entre dos presiones \(\rho_1 \) y \(\rho_2 \), mientras que si se trata de una evolución adiabática dicha diferencia representa la cantidad de calor intercambiado.

El coeficiente angular de la tangente a una isobara nos mide la temperatura en el punto de tangencia. En efecto:

\[\tan \alpha = \left(\frac{\partial \tilde{i}}{\partial S} \right)_p = -\frac{T dS}{dS} = -T \]

También es posible graduar la escala de abscisas en temperaturas potenciales \(\tilde{t} \), para gases perfectos:

\[S_2 - S_1 = c_v (\log \tilde{t}_2 - \log \tilde{t}_1) \]

Como diagrama aerológico puede utilizarse para determinar:

a) Alturas dinámicas, mediante una escala métrica basada en una fórmula hipométrica (Laplace, Babinet, etc.).

b) Nivel de condenación, convirtiendo para tal fin el trazado de las líneas de relación de mezcla constante.

c) Estabilidad e inestabilidad de masas de aire según la desviación de la curva de sondeo con respecto a la vertical.

d) Temperatura potencial, mediante la intersección de las verticales con la curva de presión de 1000 mb, interpolando la temperatura que corresponda.

e) Temperatura potencial de bulbo húmedo, intersectando las adiabáticas de saturación con la curva de presión de 1000 mb.

f) Todas las temperaturas adiabáticas (equivalente, equivalente potencial, de bulbo húmedo, de bulbo húmedo potencial saturado) (8).

g) Todas las temperaturas geopotenciales (equivalente, equivalente potencial, de bulbo húmedo, de bulbo húmedo potencial saturado).

h) Temperatura virtual, mediante la construcción de una escala adecuada, basada en una fórmula del tipo:

\[T_v = \frac{T}{1 - 0,578 \frac{\varepsilon}{\rho}} \]

d) Temperatura del punto de rocío, en la intersección de la línea de relación de mezcla de saturación con la isobara \(\rho \).

e) Aceleración de masas ascendentes o descendentes, etc.

Para el estudio del vapor de agua es de mucho interés un diagrama \(i - \rho \) modificado por Kroehn en 1938, quien ha utilizado para su trazado las tablas de Regnault y resultados experimentales para altas temperaturas.

DIAGRAMA \(i - \rho \) (ENTALPÍA - PRENSIÓN):

También puede trazarse el diagrama \(i - \log \rho \), del cual el de Neuhoff y el primitivo esquema de Staur del año 1922 \((i - \log \rho) \) son casos particulares.

En estos diagramas las curvas paramétricas de cada haz son congruentes, mediante una traducción, propiedad que resulta muy ventajosa, resaltando las adiabáticas curvas logarítmicas.

Cuesta de las siguientes propiedades:

a) El ángulo entre isotermas y adiabáticas es de 45° aproximadamente.

b) Las isobaras son líneas rectas, paralelas al eje \(i \).

c) Las áreas cerradas son proporcionales al trabajo del ciclo.

d) Congruencia para bajas y altas presiones.

e) El coeficiente angular de las isentropicas vale \(\left(\frac{\partial \tilde{t}}{\partial \rho} \right)_\tilde{t} = \Delta \rho \) la expresión que surge de \(\tilde{t} = \frac{Adp}{TdS} \) para \(TdS = 0 \).

f) Cuando \(\rho \) crece, o disminuye. Las isentropicas son curvas concavas hacia abajo, con una asintota paralela al eje \(i \).
Las isotermas en la zona de los gases perfectos son rectas paralelas al eje \(p \). En efecto:

\[
\frac{dS}{T} = \frac{dI}{T} \frac{A\nu}{A\nu dp}
\]

pero

\[
\frac{\partial I}{\partial p} = T \left(\frac{\partial S}{\partial p} \right)_T
\]

El coeficiente angular de la isotermica es nulo.

Diagrama \(i - \Phi \) (entalpía - potencial termodinámico):

Como hemos visto, entre las funciones utilizadas en Termodinámica y que son diferenciales exactas, la energía interna y la entalpía nos miden la energía de un sistema en función de la entropía y de \(dv \) o \(dp \) respectivamente; en cambio el potencial termodinámico lo hace en función de \(dT \) y \(dp \). Su expresión es:

\[
\Phi = -SdT + A\nu dp
\]

Para una transformación isotérmica \(\Phi = A\nu dp \) o sea que el trabajo ejercido o recibido por el sistema que evoluciona está mediado por la variación de potencial. La diferencia entre las variaciones elementales de \(i \) y de \(\Phi \) será:

\[
di - d\Phi = T dS + A\nu dp + S dT - A\nu dp
di - d\Phi = d(TS)
\]

Integrando y eligiendo un origen arbitrario:

\[
i - \Phi = TS
\]

de decir igual a la energía vinculada. Una recta que pasa por el origen y forma un ángulo de 45\(^\circ\) con cada uno de los ejes (para escalas iguales de \(i \) y de \(\Phi \)) nos define la isotérmica \(S = 0 \). Para una isotérmica cualquiera:

\[
\Phi = -SdT + di
\]

eysendo que el coeficiente angular:

\[
\left(\frac{\partial \Phi}{\partial i} \right)_S = 1 - S \left(\frac{dT}{dS} \right)_S
\]

La pendiente de la tangente a una isotérmica será:

\[
\left(\frac{\partial \Phi}{\partial i} \right)_T = 1 - T \left(\frac{dS}{di} \right)_T
\]

y para el caso de una isobárica

\[
\left(\frac{\partial \Phi}{\partial i} \right)_p = -\frac{S}{T} \left(\frac{dT}{dS} \right)_p
\]

Reemplazando el valor de la entropía en la expresión que define el potencial termodinámico:

\[
de = -\left[S_1 + a \log \frac{T_2}{T_1} + b(T_2 - T_1) - AR \log \frac{p_2}{p_1} \right] dT + A\nu dp
\]

cuya integración es bastante complicada, pero si se admite \(b = 0 \) y se toma \(S_1 \) correspondiente a \(T = 273 \) K se simplifica sensiblemente, permitiendo el trazado de la isobárica básica \((p_1 = 760 \text{ mm})\).

Veamos algunos casos de aplicación. Una evolución isotérmica o con pequeño aumento de temperatura (inversión) está representada para el aire por una recta vertical (si el eje de abscisas corresponde a las entalpías). Una transformación isentrópica (por ejemplo ascenso adiabático)
III. CONCLUSION

En este artículo hemos reseñado sucesivamente la construcción y la aplicación a algunos casos meteorológicos de los diagramas entálpicos, encontrando asimismo las consideraciones teóricas para su estudio. A pesar de que para los gases perfectos, caso del aire, la entalpia es sólo función de la temperatura, creemos que resulta de interés, desde el punto de vista especulativo, el análisis y estudio de los procesos termodinámicos de la atmósfera mediante el auxilio de dicha función y en tal sentido los diagramas entálpicos proporcionan una ayuda de evidente conveniencia. Cabe hacer notar que en los esquemas que figuran en el artículo se han representado, con fines ilustrativos, las zonas de cambio de fase, entendiéndose que para el aire atmosférico debe trabajarse en la región de los gases perfectos.

BIBLIOGRAFÍA

1. QUINTERO, — « Curso de Termodinámica Técnica », (Apuntes de clase).
5. DE CORDEY, — « Comparación entre los diagramas termodinámicos de la atmósfera » (1944).
8. QUINTA, — « Basics termodinámicas de la climatización artificial » (inédito).
10. COWELL, — « Le diagramme entalpique-potentiel thermodynamique » (1940).

INFLUENCIA DE LA TEMPERATURA AMBIENTE SOBRE EL PORCENTAJE DE GRASA BUTIROMÉTRICA EN LA LECHE DE VACA

Por SEBASTIAN FELIU

Resumen. — a) Se hizo el estudio de la variación del porcentaje de grasa butirométrica con relación a la temperatura ambiente en el ramo del Instituto Experimental de Ganadería ("Santa Catalina") en condiciones normales de explotación a campo. b) El promedio de G. B. del período que abarca 10 años y 6 meses fue de 3.94 % c) El tenor de G. B. se registra por debajo de la normal entre los meses de diciembre—enero hasta junio, correspondiéndose al mes de marzo el valor de 2.84 % con la máxima desviación que alcanza a —0.29 %. Entre los meses junio a diciembre se obtiene un rendimiento superior a la normal. Rendimiento en el mes de septiembre a 3.23 % de G. B. y la máxima desviación a —0.18 %. d) Existe una estrecha correlación inversa entre el porcentaje de G. B. y la temperatura ambiente, es decir, que con el aumento de la temperatura se corresponde una disminución del tenor graso.

e) Las temperaturas medias y mínimas de los diez días anteriores al ordeño las que más se relacionan con la variación del tenor de G. B. para la misma en menor escala. f) Para cada 0.5°C de aumento de la temperatura media de los días días anteriores al ordeño, entre los límites 8.9°C y 28.3°C se produce una disminución de 0.071 % de grasa butirométrica.

Summary. — a) The study of the percentage variation of butter fat (G. B.) was made according to the environmental temperature at the dairy of the Instituto Experimental de Ganadería "Santa Catalina" in normal conditions of milk production in open breeding. b) The average of record G. B. which comprised 10 years and 6 months was 3.94 per cent. c) The percentage or "tenor" of G. B. is recorded below the normal value in the period December—January till June; the value of 2.84 per cent corresponds to March with the maximum deviation which reaches to —0.29 per cent. d) A superior production above the normal value is obtained from June to December, reaching in September to 3.23 per cent of G. B. and the maximum deviation to —0.18 per cent. e) A close inverse correlation between the percentage of G. B. and the environmental temperature exists, that is to say, according to the rise in temperature a decrease on fat percentage is corresponded. f) The mean and minimum temperatures of those ten days before milking are those which are more related with the percentage variation of G. B. but minimize on a small scale. 1) For every 5.0°C rise in mean temperature of those ten days before milking, a decrease of 0.671 per cent of butter fat is produced from the limits 8.9°C to 28.3°C.

I. INTRODUCCION

Las condiciones ambientales actúan sobre el organismo animal resultando de un complejo de muchos factores, pero es de la mayor importancia para el resultado final conocer análogamente la influencia de cada uno de ellos.

Numerosos estudios se han efectuado con el objeto de determinar los elementos que actúan sobre la variación porcentual de la grasa butter-
métrica en leche de vaca, debido a la importancia que representa en su calidad, valor alimenticio y comercial. Estos factores para su mejor interpretación se reúnen en dos grupos. En el primero, se incluyen los de orden endógeno o inherente al individuo y raza, que son de carácter genético hereditario. En el otro se agrupan los factores de origen exógeno, contándose entre los principales: la alimentación, régimen de explotación, estado de gestación, lactación, época de parto, edad y medio ambiente.

Si bien es cierto que los animales homotermos, por su sistema de termo-regulación, se acercan a las climas más diversos, no es menos verdadero que sus funciones se ven alteradas en mayor o menor escala cuando el conjunto o algunos de estos elementos climáticos modifica sensiblemente las condiciones del medio. El trabajo de Regan y Richardson (9) resulta en este aspecto ilustrativo, demostrando la notable alteración sufrida en el número de respiraciones, temperatura retal y pulsaciones de las vacas sometidas a la influencia de temperaturas variables, en ambientes controlados. En algunos casos, se ha podido observar que cuando los elementos del medio les son excesivamente desfavorables, producen modificaciones morfo-funcionales que determinan, inclusive, su extinción.

Como se ha comprobado que el contenido de grasa butírométrica varía de acuerdo con las estaciones del año y por ser la temperatura el factor del clima que más singularmente la caracteriza, es posible suponer que éste sea uno de los de mayor influencia en dicha variación. El objetivo de este trabajo es observar la influencia estacional y cuantificar la relación entre la temperatura del ambiente y la variación de grasa butírométrica en leche de vaca, en las condiciones de ambiente a que se hallan sometidos los animales en estudio.

II.—ANTecedentes

Es admitido por los especializados que han tratado el tema en general como Erdmann (1), Minute (7) y otros, que entre los factores influyentes en la composición química de la leche y en especial en el porcentaje de grasa butírométrica y sus fluctuaciones, el clima ocupa un lugar de mención importante.

Entre los investigadores que estudiaron la variación estacional del tenor de la materia grasa de la leche de vaca, citaremos a Ragsdale y Turner (22) que observaron el comportamiento de 3.743 vacas Guernsey, 255 Jersey y 95 Holstein Frisian inscritas en los registros respectivos. Comprobaron la influencia del estado de lactación en condiciones de explotación común y luego de analizar el efecto de la estación determinaron que, desde el comienzo de la lactación hasta los 2 meses, y hasta los 3, se produjo un descenso del porcentaje de grasa, después de lo cual se observa un acusado gradual que se hace más pronunciado al llegar a los últimos meses de este estado. Estos autores (22) con los mismos elementos consideran la influencia de la variación estacional en el porcentaje de grasa butírométrica y la comparan a la influencia ejercida por el estado de lactación. Llegaron así a determinar que el porcentaje de grasa butírométrica de la leche de los animales que iniciaron su lactación en los meses de enero, febrero, marzo y abril (invierno en los EE.UU.) es más baja durante el verano; el porcentaje de la misma en los ani-
Algunos investigadores estudiaron en forma más concreta la influencia de la temperatura ambiental sobre el porcentaje de grasa en la leche de vaca. En estos estudios procuraron eliminar los factores que pudiesen ocasionar la acción de las temperaturas en el medio natural de la explotación y otros trabajaron con ambientes de clima acondicionado.

RAGINSKI y BRODY (*) al experimentar con un grupo de 10 vacas sometidas a las mismas condiciones de alimentación y cuidados, por espacio de 24 horas y durante 43 días, obtuvieron como resultado una estrecha relación entre la temperatura y el porcentaje de grasa. Comprobaron así los mayores porcentajes correspondían a las temperaturas más bajas y llegaron a valorar un aumento de 0,19% de grasa por cada disminución de 5,0°C entre las temperaturas límites de −2,8°C y 21,1°C.

Hayes (**) estudió los datos del tenor graso de la leche del tanque de la Universidad de Missouri en condiciones normales de explotación durante un periodo de 280 días. Las temperaturas ambientales oscilaron entre 29,8°C a −4,2°C con una amplitud de 24,0°C. Con la temperatura más alta se obtuvo un porcentaje de 3,6% de G.B. y a la mayor correspondió 3,17% de G.B. De tal manera que por cada 5,0°C había un incremento de 0,071% de grasa butirámica. Este resultado no se consideraba tan significativo como el obtenido con ensayos posteriores en ambiente acondicionado dado que intervenían además otros factores. En un segundo ensayo sometió 2 vacas Jersey a la acción de temperaturas desde 33,7°C hasta −2,8°C en seis periodos con intervalos de 5,8°C. Se obtuvo un aumento de grasa de 0,624%, lo que corresponde a 0,086% para cada 5,0°C de disminución de la temperatura. Al estudiar los resultados obtenidos entre 22,3°C y −2,8°C observó que el aumento del tenor graso fue de 0,865% que equivale a 0,172% de porcentaje para cada intervalo de 5,0°C. El autor hace notar que el aumento de la temperatura a partir de los 22,3°C produce un incremento en el porcentaje de G.B. y lo explica como posible resultado en el aumento del metabolismo animal. Finalmente afirma que en la variación estacional la temperatura es el factor más importante.

III. MATERIAL Y MÉTODO

Se utilizaron en este trabajo los datos de los análisis efectuados por el Servicio Oficial del Ministerio de Agricultura de la Nación para el control de productividad lechera, en el Tambo del Instituto Experimental de Ganadería "Santa Catalina", situado en Llallalod, P. C. N. G. R."

El periodo estudiado abarcó 10 años y 6 meses (1936-1946) en el cual se realizaron 4,151 determinaciones de G.B. Estos análisis se efectuaron mensual e individualmente sobre una cantidad de vacas en tanbo que osciló entre 10 y 35. De estos análisis mensuales se obtuvo el promedio mensual correspondiente empleándose este dato como base para los estudios. La media general de todo el periodo decíduo del porcentaje de grasa butirámica fue de 3,04.

Los animales que formaron este tanbo fueron en su mayor parte de raza Holando Argentina, puros de pedigre y puros cruzados y en menor escala Shorthorn mastico, manteniendo a campo y ordeñándose a mano con o sin termostato, bajo tinglado.
La alimentación se mantuvo dentro de los límites normales con praderas naturales, alfalfa y **Sudan Grass**, durante los meses de calor, y con avellanos, chalares, cereales, refuerzos con harina de alfalfa, **Sudan Grass**, o silajes de maíz en los meses fríos.

Puede considerarse tal tambor el de la Ganadería sujeto a una explotación nacional, por la cual la gran cantidad de factores que actúan, no modulan ni deforman en amplitud apreciable los efectos que sobre el tenor de grasa butiroperíctica pueda tener la temperatura ambiental.

Los datos meteorológicos fueron extraídos de las planillas tridimensionales de la estación que el Servicio Meteorológico Nacional tiene instalado en el mismo campo experimental. Estos datos abarcan 10 años y 6 meses (1936-1946), que corresponden al mismo período del cual se pasan los análisis del porcentaje de G. B.

De acuerdo con lo expresado más arriba, de que la temperatura ambiental fuera uno de los elementos meteorológicos de mayor importancia capaz de influir sobre el estado fisiológico del animal en productividad, y en consecuencia de provocar una fluctuación del tenor graso de la leche, se dispuso utilizar el método estadístico de correlación para determinar así el grado en que se relacionan ambas variables *a*. En tal forma se investigó separadamente la relación de la temperatura del día anterior, de los 10 anteriores y de los 30 días anteriores a la fecha del ordeño, con los porcentajes promedio mensuales de grasa butiroperíctica de la leche, cuyo detalle se presenta en el Cuadro I. Con el objeto de facilitar la lectura, el material de datos disponible se agrupó y promedió de la siguiente manera: los valores de temperaturas anteriores al ordeño por clases de 2,5°C y los valores de porcentaje de grasa butiroperíctica correspondientes a dichas temperaturas se promediaron y ordenaron correlativamente a su clase. De ellas se descargaron, al buscar estos promedios los resultados de los primeros análisis de G. B. efectuados en los meses de enero y junio del año 1936 por considerarlos anormales frente a los análisis de los mismos meses de los 10 años restantes. Así mismo para los cálculos de correlación se tuvieron en cuenta los grupos formados por menos de 3 elementos. De tal manera la comparación de 1,46 valores individuales de temperaturas y porcentajes de grasa butiroperíctica se redujo a menos de la décima parte. Esta reducción del material se hizo al tener en cuenta que las correlaciones se calcularon entre el porcentaje de grasa butiroperíctica y la temperatura anterior al ordeño considerada en la forma siguiente:

1) media del día anterior
2) máxima del día anterior
3) mínima del día anterior
4) media de los 10 días anteriores
5) máxima de los 10 días anteriores
6) mínima de los 10 días anteriores
7) media de los 30 días anteriores
8) máxima de los 30 días anteriores
9) mínima de los 30 días anteriores.

En los Cuadros II, III y IV se muestra el resultado del agrupamiento de datos en la forma que se deja explicada, y que constituyó la base para los cálculos de comparación que analizaremos más adelante.

Quiero dejar apuntado que agradezco a los Ingenieros Agropecuarios José A. Beson por la colaboración.

presenta el análisis estadístico de este traba
Cuadro III. — Tener de grano boliviano y temperatura de los diez días anteriores al ordenado

<table>
<thead>
<tr>
<th>Intervalos de temperatura en °C (2.5)</th>
<th>Promedios de las 2000 1/2 de los días en los que la temperatura media correspondió al intervalo de A</th>
<th>Promedios de los % de G.B. registrados en los casos correspondidos en B</th>
<th>Promedios de los % de G.B. registrados en los casos correspondidos al intervalo de C</th>
<th>Promedios de los % de G.B. registrados en los casos correspondidos al intervalo de D</th>
<th>Promedios de los % de G.B. correspondidos en los casos correspondidos al intervalo de E</th>
<th>Promedios de los % de G.B. correspondidos en los casos correspondidos al intervalo de F</th>
<th>Promedios de los % de G.B. correspondidos en los casos correspondidos al intervalo de G</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0 - 2.5</td>
<td>2.2</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>2.5 - 5.0</td>
<td>5.6</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>1.6</td>
<td>3.6</td>
<td>5.6</td>
</tr>
<tr>
<td>5.1 - 7.5</td>
<td>7.6</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>6.4</td>
<td>9.9</td>
<td>13.5</td>
</tr>
<tr>
<td>7.6 - 10.0</td>
<td>10.6</td>
<td>8.9</td>
<td>3.28</td>
<td>9.2</td>
<td>13.9</td>
<td>8.9</td>
<td>3.28</td>
</tr>
<tr>
<td>10.1 - 12.5</td>
<td>12.5</td>
<td>11.4</td>
<td>5.87</td>
<td>14.3</td>
<td>15.6</td>
<td>11.1</td>
<td>5.60</td>
</tr>
<tr>
<td>12.6 - 15.0</td>
<td>15.0</td>
<td>13.3</td>
<td>7.13</td>
<td>15.6</td>
<td>15.1</td>
<td>13.7</td>
<td>5.62</td>
</tr>
<tr>
<td>15.1 - 17.5</td>
<td>17.5</td>
<td>16.6</td>
<td>1.93</td>
<td>16.6</td>
<td>16.2</td>
<td>14.9</td>
<td>2.98</td>
</tr>
<tr>
<td>17.6 - 20.0</td>
<td>20.0</td>
<td>19.7</td>
<td>1.68</td>
<td>18.6</td>
<td>18.2</td>
<td>19.4</td>
<td>2.82</td>
</tr>
<tr>
<td>20.1 - 22.5</td>
<td>22.5</td>
<td>21.7</td>
<td>5.02</td>
<td>21.6</td>
<td>2.4</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>22.6 - 25.0</td>
<td>25.0</td>
<td>23.3</td>
<td>2.91</td>
<td>23.7</td>
<td>3.07</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>25.1 - 27.5</td>
<td>27.5</td>
<td>26.3</td>
<td>2.98</td>
<td>26.5</td>
<td>3.07</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>27.6 - 30.0</td>
<td>30.0</td>
<td>28.6</td>
<td>2.98</td>
<td>28.6</td>
<td>3.07</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>30.1 - 32.5</td>
<td>32.5</td>
<td>31.8</td>
<td>2.98</td>
<td>31.8</td>
<td>3.07</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

Cuadro IV. — Tener de grano boliviano y temperatura de los treinta días anteriores al ordenado

| Intervalos de temperatura en °C (2.5) | Promedios de las 2000 1/2 de los días en los que la temperatura media correspondió al intervalo de A | Promedios de los % de G.B. registrados en los casos correspondidos en B | Promedios de los % de G.B. registrados en los casos correspondidos al intervalo de C | Promedios de los % de G.B. registrados en los casos correspondidos al intervalo de D | Promedios de los % de G.B. registrados en los casos correspondidos al intervalo de E | Promedios de los % de G.B. correspondidos en los casos correspondidos al intervalo de F | Promedios de los % de G.B. correspondidos en los casos correspondidos al intervalo de G |
|-------------------------------------|---|--|--|--|--|--|--|--|
| 0.0 - 2.5 | 2.5 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| 2.5 - 5.0 | 5.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| 5.1 - 7.5 | 7.6 | 2.2 | 6.64 | 13.5 | 13.5 | 13.5 | 13.5 |
| 7.6 - 10.0 | 10.6 | 11.4 | 3.02 | 14.3 | 14.3 | 14.3 | 14.3 |
| 10.1 - 12.5 | 12.5 | 13.2 | 1.86 | 15.0 | 15.0 | 15.0 | 15.0 |
| 12.6 - 15.0 | 15.0 | 16.5 | 1.86 | 16.5 | 16.5 | 16.5 | 16.5 |
| 15.1 - 17.5 | 17.5 | 19.6 | 3.15 | 18.7 | 18.7 | 18.7 | 18.7 |
| 17.6 - 20.0 | 20.0 | 21.3 | 2.94 | 21.7 | 21.7 | 21.7 | 21.7 |
| 20.1 - 22.5 | 22.5 | 23.5 | 2.95 | 23.8 | 23.8 | 23.8 | 23.8 |
| 22.6 - 25.0 | 25.0 | 35.0 | 3.09 | 29.2 | 3.09 | 29.2 | 3.09 |
| 25.1 - 27.5 | 27.5 | 28.8 | 2.98 | 28.8 | 2.98 | 28.8 | 2.98 |
| 27.6 - 30.0 | 30.0 | 31.1 | 3.04 | 31.1 | 3.04 | 31.1 | 3.04 |

Nota: Discrepancia de temperatura anómala
ALGUNAS REFERENCIAS SOBRE EL AMBIENTE DE LA REGIÓN EN QUE SE HIZO ESTE ESTUDIO

La estación meteorológica "Llavallol" ubicada en el Instituto "Santa Catalina" a 33° 42' de latitud, 58° 27' de longitud y a 18 metros aproximadamente sobre el nivel del mar, se halla situada a pocos kilómetros de la ribera argentina del Río de la Plata, sobre el delta que corresponde entre las formaciones fitoecológicas del Parque Mapopópolis y la Estepa Pampense.

En el presente no se cuenta de lo que resta de la vegetación prístina por la intensa acción del hombre, especialmente notable por la proximidad a la Capital Federal de la que está separada aproximadamente en 30 kilómetros.

El resumen termo-pluvimétrico del Cuadro V, indica los valores correspondientes a los distintos meses y los promedios anuales calculados sobre los registros de 1936 a 1946.

CUADRO V. — Valores termo-pluvimétricos del Instituto de "Santa Catalina". Promedios 1936-1946

<table>
<thead>
<tr>
<th>Meses</th>
<th>Temperatura media</th>
<th>Temperatura máxima</th>
<th>Temperatura mínima</th>
<th>Precipitación</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enero</td>
<td>24.5</td>
<td>30.8</td>
<td>18.5</td>
<td>85</td>
</tr>
<tr>
<td>Febrero</td>
<td>24.7</td>
<td>29.2</td>
<td>16.7</td>
<td>67</td>
</tr>
<tr>
<td>Marzo</td>
<td>28.6</td>
<td>30.8</td>
<td>17.5</td>
<td>170</td>
</tr>
<tr>
<td>Abril</td>
<td>17.1</td>
<td>22.3</td>
<td>10.5</td>
<td>95</td>
</tr>
<tr>
<td>Mayo</td>
<td>13.8</td>
<td>18.7</td>
<td>7.7</td>
<td>62</td>
</tr>
<tr>
<td>Junio</td>
<td>16.5</td>
<td>16.5</td>
<td>9.5</td>
<td>62</td>
</tr>
<tr>
<td>Julio</td>
<td>16.7</td>
<td>16.2</td>
<td>9.4</td>
<td>49</td>
</tr>
<tr>
<td>Agosto</td>
<td>11.5</td>
<td>16.2</td>
<td>5.5</td>
<td>67</td>
</tr>
<tr>
<td>Setiembre</td>
<td>13.9</td>
<td>18.5</td>
<td>7.2</td>
<td>94</td>
</tr>
<tr>
<td>Octubre</td>
<td>16.6</td>
<td>21.3</td>
<td>9.8</td>
<td>185</td>
</tr>
<tr>
<td>Noviembre</td>
<td>19.7</td>
<td>24.7</td>
<td>11.6</td>
<td>53</td>
</tr>
<tr>
<td>Diciembre</td>
<td>22.6</td>
<td>27.9</td>
<td>14.5</td>
<td>109</td>
</tr>
</tbody>
</table>

Del análisis de este cuadro se desprende que la región se caracteriza por tener un clima relativamente suave, con poco frío en invierno y en verano el calor no es excesivo. Las lluvias se distribuyen con bastante regularidad durante todo el año, para si bien presenta un máximo en primavera y verano, en estas estaciones las exigencias en agua son también mayores. En esta forma las condiciones climáticas resultan particularmente favorables para el desarrollo de praderas naturales o la formación de praderas artificiales.

De acuerdo con la nueva clasificación de Thornthwaite a esta región correspondería un clima Bf Bf r, es decir húmedo, mesometral, con nula o pequeña deficiencia de agua en verano y con una concentración estival de su eficiencia térmica inferior al 48 %.

IV. — ANÁLISIS

A) INFLUENCIA DE LA ÉPOCA DEL AÑO SOBRE EL TENER DE GRASA BUTIOMÉTRICA

Para determinar la influencia de la época del año sobre la variación media del tener graso, se hizo la representación gráfica de la fig. 1 con los datos del Cuadro I. Sobre el eje de las abscisas se han indicado las fechas de los análisis y sobre el de las ordenadas el promedio de porcentaje de G.B. de cada determinación mensual.

Por la observación de la figura 1, se desprende que existe una variación cronológica del tener graso, que se corresponde con la curva de creación trazada a mano levantada según lo aconsejado por diversos autores de estadística. Si se tiene en cuenta que el promedio general de los 10 años y 6 meses fué de 3.04 % de G.B., indicados por la recta A-B, es posible observar que en el período comprendido desde diciembre-enero a junio el tener de grasa es menor que el normal, llegando a la desviación máxima negativa de 0.29 % en el mes de marzo y cuyo valor es de 2.84 %, en el intervalo comprendido entre junio y diciembre.
La curva manifesta valores superiores a la normal con una desviación máxima positiva de 0,18% en el mes de septiembre alcanzando un teñor máximo de 3,22%.

La gráfica de la figura 2 se hizo con el promedio decenal de las medias mensuales de los porcentajes de G.B. La curva trazada a mano levantada coincide con la curva ajustada de la figura 1. El cálculo de índice de correlación, efectuado con el objeto de determinar el grado de coincidencia de la curva y los datos reales, dio un valor de 0,960 lo cual significa un alto grado de coincidencia.

B) INFLUENCIA DE LA TEMPERATURA SOBRE EL TENOR DE GRASA BUTIROMÉTRICA

Analizaremos a continuación los resultados obtenidos con el cálculo del coeficiente de correlación entre los valores de temperatura y los porcentajes de G.B. agrupados como se dejó explicado en el capítulo de Material y Método y que en los Cuadros II, III y IV se presentan en detalle.

La relación entre las temperaturas medias del día anterior y los porcentajes de G.B. están resumidas en el Cuadro II, columnas B y C.

Se ordenaron los promedios de estas temperaturas entre 6,8°C y 28,7°C. Los promedios de porcentaje de grasa butirométrica correspondientes, registraron valores extremos de 2,93 y 3,17. El cálculo de correlación dio —0,345 lo que indica ser poco significativo.

La relación entre las temperaturas máximas del día anterior y los porcentajes de grasa butirométrica están resumidas en el Cuadro II, columnas D y E.

Se ordenaron estos promedios entre 11,6 y 37,1°C. Los promedios de porcentaje de G.B. oscilaron dentro de los valores extremos de 2,93 y 3,19. El cálculo de correlación dio —0,529, que resultó algo significativo.

La relación entre las temperaturas minímas del día anterior y los porcentajes de grasa butirométrica están comprendidos en el Cuadro II, columnas F y G.

Se ordenaron los promedios entre las temperaturas de —3,6 y 20,7°C. Los promedios de porcentaje de G.B. correspondieron dentro de los valores extremos de 2,84 y 3,14. El cálculo de correlación dio un valor de —0,227 que indica ser nada significativo.

La relación entre las temperaturas medias de los diez días anteriores al ordeno y los porcentajes de G.B. están comprendidos en el Cuadro III, columnas B y C.

Se ordenaron los promedios entre las temperaturas de 8,9 y 28,5°C. Los promedios de porcentaje de grasa butirométrica correspondieron dentro de los valores extremos de 2,91 y 3,28. El cálculo de correlación dio un valor de —0,857 y el error probable de 0,0566. Tales guarismos permiten asegurar que hay una estrecha relación entre ambas variables y que a mayor temperatura corresponde un menor porcentaje de G.B. Este coeficiente de correlación resulta ser muy significativo.

La relación entre las temperaturas máximas de los diez días anteriores al ordeno y los porcentajes de grasa butirométrica están comprendidos en el Cuadro III, columnas D y E.

Se ordenaron los promedios entre las temperaturas 11,3 y 32,9°C. Los promedios de porcentaje de G.B. variaron entre 2,93 y 3,15. El cálculo del coeficiente de correlación dio —0,481, lo que indica ser poco significativo.

La relación entre las temperaturas mínimas de los diez días anteriores al ordeno y los porcentajes de G.B. están comprendidos en el Cuadro III, columnas F y G.

Se ordenaron los promedios entre las temperaturas 1,6 y 18,9°C. Los promedios de porcentaje de G.B. variaron entre 2,82 y 3,11. El cálculo de correlación dio —0,819 indicando ello ser muy significativo.

La relación entre las temperaturas medias de los treinta días anteriores al ordeno y los porcentajes de G.B. están comprendidos en el Cuadro IV, columnas B y C.

Se ordenaron los promedios entre las temperaturas 9,2 y 26,0°C. Los promedios de porcentaje de grasa butirométrica oscilaron entre 2,94 y 3,16. El coeficiente de correlación obtenido fue de —0,145, indicando ser nada significativo.

La relación entre las temperaturas máximas de los treinta días anteriores al ordeno y los porcentajes de G.B. están indicadas en el Cuadro IV, columnas D y E.

Se ordenaron los promedios entre las temperaturas de 14,2 y 31,1°C. Los promedios de porcentaje de grasa butirométrica correspondientes abarcaron de 2,92 a 3,16. El coeficiente de correlación fue de —0,386 que indica ser muy poco significativo.

La relación entre las temperaturas mínimas de los treinta días anteriores al ordeno y los porcentajes de G.B. están ubicadas en el Cuadro IV, columnas F y G.

Se ordenaron los promedios entre las temperaturas 2,0 y 16,3°C. Los promedios de porcentaje de G.B. correspondientes abarcaron desde 2,95 a 3,14. El coeficiente de correlación fue de —0,760 lo que indica ser significativo.

Dado que la temperatura media de los diez días anteriores al ordeno son las que más influyen sobre el tenor de grasa butirométrica, se ha procedido a calcular la regresión correspondiente cuya gráfica se representa en el fig. 3.
Se obtendrá así:

Coeficiente de regresión = — 0.01417

Ecuación de regresión (% de G.B.) = 3,318 — 0,1417 × temperatura media de la década anterior.

El coeficiente de regresión indica que para cada grado de aumento de la temperatura media de la década anterior al ordeño, la grasa butirrométrica disminuirá en 0,01417 ‰, es decir que para cada 5°C de disminución de la temperatura corresponde 0,071 ‰ de G.B.

![Diagrama de correlación entre el % de G.B. y la temperatura media de la década anterior en días de medida](image)

En el Cuadro VI se puede observar, los coeficientes de correlación a que nos hemos referido, y a la vez el significado de los coeficientes, teniendo en cuenta su magnitud y los grados de libertad de cada caso, según lo determinado por Fisher (1949;192)

<table>
<thead>
<tr>
<th>Ancho del ordeño</th>
<th>1 día</th>
<th>10 días</th>
<th>30 días</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperatura media</td>
<td>—0.545</td>
<td>—0.857</td>
<td>—0.145</td>
</tr>
<tr>
<td>Temperatura máxima</td>
<td>—0.529</td>
<td>—0.461</td>
<td>—0.386</td>
</tr>
<tr>
<td>Temperatura mínima</td>
<td>—0.227</td>
<td>—0.819</td>
<td>—0.760</td>
</tr>
</tbody>
</table>

Ref.: *** muy significativo; ** significativo; * algo significativo; — nada significativo.

V. CONCLUSIONES

a) La variación del porcentaje de G.B. se manifiesta rítmicamente estacional, donde el valor negativo de correlación se produce en marzo, abril y el positivo en setiembre-octubre.

b) Los coeficientes de correlación son siempre negativos, lo cual indica que dentro de las condiciones normales del ambiente en que se trabaja las temperaturas influyen en sentido inverso sobre el porcentaje de grasa butirrométrica.

c) Las temperaturas del día anterior no influyen prácticamente aunque se destaca en forma relativa las máximas cuyas influencias van disminuyendo en los 10 y en los 30 días. Para alcanzar el nivel de significancia del 95 % se necesitaría en este caso un coeficiente de correlación de 0.621 (Fisher 1949).

d) Las temperaturas medias y mínimas de los diez días anteriores al ordeño indicarían ser las determinantes en la fluctuación del tenor de grasa butirrométrica. Corresponde la mayor correlación a las temperaturas medias, y en ambos casos los coeficientes hallados superan el 99 % de significancia estadística.

e) Las temperaturas registradas durante los 30 días anteriores al ordeño influyen significativamente solo al considerar las mínimas.

f) El hecho de que la temperatura de los 10 días anteriores al ordeño tengan mayor influencia que la del día anterior, explicaría parcialmente el desplazamiento de los puntos extremos de la curva de la fig. I con respecto a las épocas más frías y cálidas del año según se indica en el cuadro I.

g) Para cada 5,0°C de la disminución de temperatura de los 10 días anteriores al ordeño corresponde un aumento de 0,071 ‰ de grasa butirrométrica.

BIBLIOGRAFÍA

ANÁLISIS DE LA VARIACIÓN DIURNA DE LA PRESIÓN EN LA REPÚBLICA ARGENTINA

Por Kurt Wegener *

Resumen. — Representación gráfica de la variación diurna de la presión en varios lugares de la República Argentina y discusión de su relación con la distancia al mar, la altura, y la longitud y latitud geográficas.

Summary. — Graphical representation of the diurnal variation of the pressure at various places in Argentina and discussion of the relation to the distance to the sea, the altitude, and the geographical latitude and longitude.

CONSIDERACIONES GENERALES

En virtud de ser muy grande la variación periódica “regular” o diurna de origen desconocido que se superpone a las variaciones irregulares del tiempo en el territorio argentino, examinaremos estas características como una contribución más al Pronóstico.

Al realizar este estudio tomamos en consideración el trabajo de Herbert Riehl, que nos permite comparar resultados.

En el bultón de la American Meteorological Society de septiembre de 1947, pág. 47, el citado autor, de la Universidad de Chicago, al publicar el tema "Diurnal variation of pressure and temperature aloft in the eastern Caribbean" da los datos obtenidos con radiosondeo, aunque limitándose a un promedio anual para el hemisferio norte. Al comparar resultados debemos, pues, tener en cuenta: que las alturas dadas son barométricas (suponen una atmósfera que no se desplaza en sentido vertical), y que los datos logrados por radiosondeo no gozan todavía de la plena confianza de la ciencia.

Según esta publicación, la atmósfera a mayor altura absorbe la radiación del sol, y la temperatura crece a partir de la mañana hasta las 12 horas locales aproximadamente hasta 2 grados centígrados a los 10000 metros de altura, disminuyendo por la tarde en la misma proporción. Durante la noche la temperatura no varía en la altura. La presión en la proximidad del suelo pasa por un mínimo de -11,5 mb por debajo del valor medio, que falta a gran altura, a las 04 30 hora local; pasa por un máximo a las 10 30 horas; que es más fuerte según esta publicación en altura que a nivel del suelo (máximo de +2,2 mb por encima del valor medio a los 6100 metros), y pasa, además, por un mínimo de -2 mb por debajo del valor medio a las 16 30, y por un máximo nocturno a las 22 20, los que desaparecen a gran altura. El aumento de temperatura de dos grados, considerando el calor específico del aire en 1/5, supone la absorción de 500 gr-cal/columna de aire de 1000 gr/cm². Según las mediciones de la radiación del sol, que por lo menos en esta cuestión son relativamente seguras, la absorción

* Director de Meteorología (Universidad de Berlín). Avent de Técnica de la Dirección General del Servicio Meteorológico Nacional.
de la radiación vertical del sol por la atmósfera varía entre 0.2 y 0.4 gr-cal cm$^{-2}$ min$^{-1}$, o para las 5 horas de la mañana 60 y 120 gr-cal. cm$^{-2}$, las que corresponden a un aumento de la temperatura de 0.12 a 0.24 grados C. Al parecer los registros de los sondeos aéreos son influenciados por la radiación del sol que es absorbida por el termógrafo.

Teniendo en cuenta este calentamiento, considerando el coeficiente de dilatación 1/273, y suponiendo que el aire al dilatarse hacia arriba se escurre hacia todos lados para igualar el nivel, vemos que la presión al nivel del mar disminuye, y de la relación: variación de la temperatura /273, igual a la variación de la presión /760 mm mercurio, resulta que la presión varía de 0.33 a 0.67 mm de mercurio, mientras en la República Argentina la presión varía en 2 y más mm en el día. La absorción inmediata de la radiación del sol por la atmósfera no puede aclarar sino parte del fenómeno.

Este aspecto se vincula al fenómeno que presenta el suelo de absorber y emitir radiación, calentando y enfriando el aire vecino. Esta variación se limita a las capas inferiores de la troposfera.

Además, consideremos un factor hasta ahora no mencionado, que uno sepa, en la literatura de esta difícil cuestión: la rotación de la Tierra hacia el este, o, lo que es lo mismo, el movimiento de nuestro fenómeno hacia oeste. Tiene el valor de 1370 km/hora en el Ecuador y de 1370 km/hora en la latitud de 30 grados; mientras que el sol se movía a una temperatura de 31°C alcanza a 1300 km/hora. Extrapolando hallamos una coincidencia completa para la temperatura de 35°C y la latitud de 35°. Esta coincidencia aproximada facilita al parecer el fenómeno al atravesar los mares, sin desaparecer allí, aunque en los mares falta el calentamiento y enfriamiento del suelo, y sólo la absorción inmedia del aire hace continuar el fenómeno.

LA VARIACIÓN OBSERVADA

La variación periódica de la presión en mm/hora es pequeña, y para la presión p y la hora t podemos expresarla en el sistema de Newton por p. Este coeficiente diferencial es el objeto de nuestra investigación. Los valores están en mm/hora, ya que las tablas del Servicio Meteorológico dan millímetros.

La presión se define como producto de la masa que obra sobre un cm2 y de la gravedad; ambos valores pueden variar.

Se puede suponer que el aire tiene inercia con respecto a las aceleraciones de la tierra. La velocidad de la tierra en su trayectoria alrededor del sol es de 30 km/seg, y esta velocidad varía para un punto del Ecuador en 0.4 km/seg entre el día y la noche. La relación de la fuerza centrifuga entre noche y día es, pues:

$$c^2/\alpha^2 = (30,4/29,6)^2 \approx 1,055$$

La masa de aire del hemisferio nocturno debe ser un 5% mayor que la del hemisferio diurno para estar en equilibrio de presión.

Puede ser que la luz zodiacal, como la cola de un cometa, desviada por la fuerza centrifuga, y no participando de la rotación terrestre, busque esa masa mayor. Más tarde volveremos brevemente sobre esta cuestión.
He calculado ρ para los lugares de observación y he trazado curvas de igual ρ para todo el año en centésimos de mm/hora. Los meses están representados por las ordenadas, y las horas —1 hora oficial— por las abscisas.

Se advierte de inmediato que siempre, en todos los lugares y meses, el máximo de la variación negativa se produce a mediodía local, lo que muestra claramente que la radiación del sol es el factor predominante del fenómeno.

La comparación de Mar del Plata con Mendez y Cipolletti, Fig. 1, vistas (a), (b) y (c), permite concluir que la distancia del mar o la continentalidad del lugar acentúa el fenómeno, la comparación de Tucumán, Córdoba, Colonia Sarmiento, y Año Nuevo, vistas (d), (e), (f) y (g), demuestra que el fenómeno disminuye rápidamente con latitudes crecientes.

En La Quiaca (3.400 m), Fig. 2, las variaciones acentúanse, aunque allí a causa de la altura, la presión está disminuida en 1/3, y, por consiguiente, también la variación tendría que disminuir en la medida correspondiente.

Se ve, además, que los resultados mensuales varían tanto en todos los observatorios, con excepción de La Quiaca, que no son admisibles los promedios anuales.

La Quiaca (22° S) es el único observatorio que está situado dentro del trópico, lo que explica bastante su excepción de esta regla. El resultado es, pues, que el sol vertical irradiá de inmediato con intensidad a un círculo horizontal de ∼20° o sea de 2000 km de radio, círculo que se desplaza con una velocidad de 1400 km/hora aproximadamente, hacia el oeste.
Sigue un cinturón menos caldeado en el que el aire caliente del centro se desplaza; y más lejos, la influencia del suelo, la conducción, y así mismo, el intercambio de calor entre las capas inferiores del aire, oculta el fenómeno principal.

Con excepción de La Quisca, las dos series de $p > 0$ son simétricas, en el invierno más próximas y en el verano más alejadas.

![Gráfica de presión]

Es evidente que dependen, por lo menos en forma parcial, de la radiación nocturna del suelo, del consiguiente enfriamiento y de la contracción del aire, siendo aumentada la presión por el aire emanado del centro.

Recordemos finalmente la velocidad del fenómeno, que forma un oleaje al encontrarse con la Cordillera.

CRISTO REDENTOR

Por razones de brevedad me limitaré a representar los valores de verano ya que éste presenta las variaciones más grandes (Cuadro 1).

<table>
<thead>
<tr>
<th>Hora</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>La Quisca</td>
<td>0.17</td>
<td>0.36</td>
<td>0.66</td>
<td>0.94</td>
<td>0.91</td>
<td>0.99</td>
<td>0.82</td>
<td>1.02</td>
<td>0.98</td>
<td>0.70</td>
<td>0.44</td>
<td></td>
</tr>
<tr>
<td>Cristo Redentor</td>
<td>0.54</td>
<td>0.08</td>
<td>-0.14</td>
<td>-0.31</td>
<td>-0.50</td>
<td>-0.52</td>
<td>-0.20</td>
<td>-0.16</td>
<td>-0.06</td>
<td>-0.08</td>
<td>-0.12</td>
<td>0.16</td>
</tr>
<tr>
<td>Hora</td>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
<td>19</td>
<td>20</td>
<td>21</td>
<td>22</td>
<td>23</td>
<td>24</td>
</tr>
<tr>
<td>La Quisca</td>
<td>(\ldots)</td>
<td>-0.65</td>
<td>-0.68</td>
<td>-1.02</td>
<td>-1.24</td>
<td>-1.46</td>
<td>-1.48</td>
<td>-1.02</td>
<td>0.48</td>
<td>0.00</td>
<td>0.40</td>
<td>0.66</td>
</tr>
<tr>
<td>Cristo Redentor</td>
<td>(\ldots)</td>
<td>-0.20</td>
<td>-0.25</td>
<td>-0.26</td>
<td>-0.20</td>
<td>-0.24</td>
<td>-0.24</td>
<td>0.10</td>
<td>0.30</td>
<td>0.48</td>
<td>0.00</td>
<td>0.60</td>
</tr>
</tbody>
</table>

La Quisca (3400 m) está situada en la altiplanicie de la Puna; Cristo Redentor (3830 m), en una cresta dominada por montañas muy altas, en el sur de 6000 y en el norte de 7000 metros. El Cuadro I expresa estas diferencias de situación geográfica.

La alta presión de las 9 en La Quisca desaparece casi completamente en Cristo Redentor, y considerando que en esta última estación existe todavía la influencia, si bien pequeña, del suelo, podemos deducir que en la altura de Cristo Redentor, esta alta presión desaparece completamente. Lo mismo vale para el mínimo de las 17, quedando sólo una pequeña disminución de la presión en Cristo Redentor durante el día entre la madrugada y las 17 horas, y alta presión durante la noche, con un máximo a la media noche. En La Quisca, casi todo el fenómeno de la variación diurna de la presión es, pues, consecuencia del calentamiento y enfriamiento (radiación) del suelo.

La alta presión durante la noche en Cristo Redentor puede tener relación con el descenso de aire de las capas de nieve y hielo que cubren las cumbres vecinas.

CIELO DESPEJADO Y CUBIERTO

Si el fenómeno depende principalmente del calentamiento y enfriamiento del suelo, debe existir también una relación según que el cielo esté cubierto o despejado. Por consiguiente, he formado el promedio de los días despejados para los meses de enero-febrero de los años 1928-40 del observatorio de Córdoba, y para el mismo tiempo el promedio de los días cubiertos (nublados). Las curvas, como se advierte en la Fig. 3, no vuelven al punto inicial sino en los días con cielo despejado; la presión baja en las 24 horas del día 1.5 mm, subiendo la misma cantidad en los días completamente nublados. Comparando esto con la variación diurna de la temperatura en los días despejados y nublados, hallamos que en los días despejados el aire, en la proximidad del suelo se calienta 2 grados centígrados por día, mientras que en los días

![Gráfica de presión diurna]
nubladas la amplitud de la variación diurna de la temperatura se reduce a la quinta parte.

La experiencia de los servicios de pronóstico mundiales enseña que existe en los continentes una tendencia a períodos de tiempo de aproximadamente una semana. Aquí venmos la causa: durante tres o cuatro días con cielo despejado se calienta el suelo, bajando la presión, hasta que el ascenso del aire calentado forma nubes; la falta de insolación en los días siguientes origina un enfriamiento del aire y un aumento de la presión.

Este fenómeno es el origen de la depresión térmica muy regular que se forma en la República Argentina entre la cordillera de los Andes y Santiago del Estero a causa de la insolación, especialmente durante el verano. Esta región tiene los meses más calurosos de toda América del Sud, incluso Brasil, pero relativamente secos.

La Quillota es la única estación que nos permite formularnos un juicio acerca de los procesos que ocurren en la superficie de la Puna, por estar situada en el borde de ella. Pero más decisivas podrían ser las observaciones de la República de Bolivia, las que no han sido publicadas hasta ahora.

MOVIMIENTO VERTICAL DEL AIRE

La fórmula de Laplace para la altura barométrica, mejorada por Sandeström y Bjerkm, vale sólo para una atmósfera que no posee aceleración libre vertical, mientras que el movimiento vertical, que se produce a causa de variaciones de la aceleración vertical, representa una cuestión importante en Meteorología. La gravedad supuesta o medida en los observatorios, no es en rigor una constante en el aire.

El barómetro de mercurio mide la massa/cm², y multiplicando este valor por la gravedad se determina la presión. El anenómetro reacciona por la presión. La relación de estos valores podría ser lo tanto, dar la verdadera aceleración, y la diferencia entre esta y la gravedad (normal) del lugar daría la aceleración libre. Pero infortunadamente los valores horarios del barógrafo anenómetro se corregen con el barómetro de mercurio, lo que impide su utilización para la determinación de la aceleración libre. Además, las indicaciones del barógrafo dependen de la temperatura del laboratorio.

En estas circunstancias nos limitamos a la deducción lógica de la aceleración libre.

CONCLUSIONES

1) Absorción inmediata de la radiación del sol por el aire. — De mañana el aire se calienta y tiene que dilatarse hacia arriba porque a su alrededor ocurre lo mismo y no hay escape lateral. El resultado de esta tendencia arriba es un aumento de la presión en la atmósfera calentada. A este aumento corresponde de tarde una disminución de la presión por la contracción del aire. Estas aceleraciones, por el hecho de distribuirse durante muchas horas en toda la atmósfera, son muy pequeñas.
EXPLORACION MICROCLIMATICA EN LA SELVA TUCUMANO-ORANENSE

Por: Juan J. Borges, Alberto Cañizalo y Miguel C. Santos

Resumen: — Da a conocer este trabajo el régimen de heladas en diversas localizaciones de la selva tucumano-oranense, y la aptitud agronómica de nuevas áreas en el NW argentino. Luego de describir la situación simétrica media que origina la formación de heladas en la zona NW de la Argentina, los autores indican que en el dominio de la selva existen situaciones que ofrecen escaso riesgo de heladas. Así acontece con las pendientes expuestas al N, a media altura sobre valles profundos, en el 17% de los años, y, sobre las colinas, a 240 m sobre los valles contiguos, sólo en el 2% de los años. Sin embargo, las temperaturas inferiores a 7°C ocurrieron casi regularmente todos los años. Se analizan los valores de irradiación solar, temperatura del suelo, marcha diaria de la temperatura y concentración de la humedad del aire, y altura de la capa superficial de nieve por debajo de 6°C para explicar tales diferencias. En base a estos resultados se recomiendan cultivos tales como café, té y coca, por ser tolerantes a las bajas temperaturas de esos circunscriptos regímenes.

Summary: — This work as for scope the knowledge of frost hazard in several microclimatic sites in the Tucumán-Oran region, and the agronomic suitability of new areas in NW Argentina. After describing the average synoptic situation, which originates frost formation in the NW zone of Argentina, the authors show some situations within the rain forest belt as being of little frost danger: on North slopes, at middle height over deep valleys, 17% of years have at least one frost day and over the hills, at 240 m over the contiguous valleys, only 2% of years. However, temperature lower than 7°C occur almost regularly every year. Values of solar radiation, soil temperature, daily variation of air temperature and humidity concentration, and depth of the surface layer of air below 6°C are analyzed to explain such differences. On the basis of these results, crops such as coffee, tea and coca are recommended, since they are tolerant enough to withstand the temperature conditions discussed.

I. INTRODUCCION

La formación fitogeográfica de la selva existe en nuestro país localizada en algunas partes de su territorio como una prolongación de formaciones similares, pero mucho más considerables, que abarcan extensas regiones de países limítrofes. Tal es la selva Tucumano-oranense, en la que se ha desarrollado este estudio, que constituye un apéndice de las formaciones de la Hoya y de la Yunga que, desde la alta cuenca del Amazonas en Brasil, se prolonga por el oriente de Perú y Bolivia y penetra en las provincias del noreste argentino. La vegetación bigrelfía de alto porte, con predominio de especies de follaje persistente y hojas arbores, encontró clada con elementos arbustivos, subarbustivos y herbáceos, llanas y erí- ficas, caracteriza su fisonomía. Otro aspecto de este tipo de vegetación lo constituye la selva Misionera que en el noreste argentino resulta una prolongación de la selva urundebus communion (HAUMAN et al., 1947; PARDO, 1945; y FRENGUELLI, 1946).

Si la vegetación natural puede constituir un indicador del clima, desde que integra en una expresión concreta todos sus elementos y los del suelo, existe una base suficiente para suponer que la Argentina posee climas tropicales o subtropicales semijóvenes, por lo menos en algunos aspectos, a los de aquellas regiones donde esas formaciones adquieren su más completa manifestación.

Esta observación empírica habrá llevado a los iniciadores de la agricul- tura y de la técnica agrícola argentina a implantar, en esas regiones y en los campos ganados a la selva, cultivos tropicales y subtropicales. Sobre los éxitos y fracasos de estas empresas se han echado las bases de nuestro incipiente agricultura tropical, puesto que hemos crecido y crecemos aún del conocimiento agroclimático que permita determinar las posibilidades agrícolas totales de esas regiones.

No obstante, es conocido que uno de los factores adversos a los cul- tivos tropicales ya implantados son los heladas, que ocurren con rela- tiva frecuencia. Este fenómeno agrometeorológico limita la posibilidad de cultivo de aquellas especies tropicales más sensibles a las bajas temperaturas, por lo menos en las regiones conocidas o exploradas. Sin embargo, no faltan quienes afirman que dentro del territorio de nues- tro país existen regiones inexploradas donde nunca ha llovido, ni que a falta de una documentación concreta se preguntan si existen climas locales o microclimas que, por la situación topográfica o por la influencia de la vegetación selvática, permitan el cultivo de estas últimas especies a que nos hemos referido.

La documentación climatológica que posee el país no permite dar una contestación categórica a esta cuestión, puesto que las instalaciones meteorológicas se han ubicado en las poblaciones que circundan la selva o a lo largo de las depresiones que forman ríos que la limitan, en localizaciones en que la selva ya pierde su carácter.

Creemos que solamente los relevamientos microclimáticos sistemáticos, uno de los cuales presentamos en este trabajo, permitirán dar una respuesta prudentemente rápida y segura a esta cuestión, y orientar así la capacidad mediata o inmediata de nuestra agricultura tropical.

La comisión de Agricultura del Honorable Senado de la Nación ha- ciéndose eco de esta necesidad promovió esta investigación y el Servicio Meteorológico Nacional por intermedio del Servicio de Microclimato- gía de su Departamento de Agrometeorología, concurrió con el personal y material necesario.

II. BREVE DESCRIPCION DE LA REGION ESTUDIADA

La selva Tucumano-oranense está ubicada en las sierras Subandinas, de IGNARIELLI (1921) y, en su mayor parte, sobre las faldas orientales de las sierras Perimarítimas del Noreste, de FRENGUELLI (1946).

El primero de estos sistemas constituye el límite noroeste de la
gran depresión o llanura pampípica. Geográficamente es el mismo que en Bolivia circunda la gran depresión chiquitana y se caracteriza por sierras bajas que, sin embargo, llegan hasta 2000 m de altura en su extremo sur.

Estas sierras se distribuyen en cordones longitudinales y paralelos separados existen y de las sierras Peripampásicas del Noroeste propiamente dichas por valles profundos y extendidos, rellenos con materiales vulvivos. Estas amplias depresiones permiten el escurrimiento de las aguas del sistema serrano hacia el río Paraná por intermedio de los ríos Bermejo, San Francisco y Aráuca, y hasta la cuenca cerrada de Mar Chiquita por el río Dulce.

En la porción más septentrional, las sierras Subandinas, tienden a formar una unidad con las sierras Peripampásicas del Noroeste. Este último sistema arranca directamente de la Puna y en su dirección principal hacia el sur, en cordones longitudinales, penetra en las provincias de Jujuy, Salta, Tacumán y Catamarca. En este sistema orográfico se desarrolla una red hidrográfica muy variada de pequeñas afluentes de los ríos mayores que antes hemos citado, y en el encuentro sus ríos cotidianos el río Tucumán-orinoca, cuando la disminución de la temperatura con la altura coincide con el límite crítico de las especies tropicales y subtropicales que la caracterizan, aproximadamente en los 2000-2500 m sobre el nivel del mar.

La red hidrográfica de esta región observa un régimen pluvial muy marcado que coincide con el de las lluvias. Esta periodicidad es mucho más notable en los pequeños afluentes de los ríos mayores que la forman, pues algunos de ellos pierden completamente su caudal durante el invierno.

En la Fig. 1 se puede apreciar el macrorelieve de la región descripta, con el dominio de la selva húmeda Tucumán-orinoca en forma sólo aproximada.

El clima está profundamente determinado por la circulación atmosférica que caracteriza a esta parte más austral de Sud América. El marco climático entre el clima de verano y el de invierno, principalmente en cuanto al régimen de las precipitaciones, proviene del desplazamiento estacional de la gran faja antíciclónica subtropical. Este desplazamiento, si bien se encuentra algo disimulado sobre el continente por la formación de la depresión témica, y de otoño del noroeste argentino (SCHIPPERSTEEF, 1951), resulta particularmente claro sobre el océano y aún en el continente, pero por encima de los 3000 m de altura, más o menos, como puede comprobarse si se compara la marcha anual de la presión reducida a un mismo nivel, en Cristo Redentor y La Quiaca. Durante el invierno la faja antíciclónica subtropical se encuentra al norte del paralelo 25°S y determina la sequía invierno sobre toda la región subtropical del continente, exceptuada la costa atlántica donde actúan otras causas.

En verano, en cambio, la faja antíciclónica subtropical se desplaza hacia el sur, con frecuencia hasta más allá de los 30°S y en esta forma el sistema de lluvias tropicales se extiende hacia el sur para abarcar el norte argentino.

Así, las corrientes del este que se generan en el franco norte de la gran faja antíciclónica como una prolongación de los alisios, pueden avanzar hasta la zona precordillerana y de las sierras Peripampásicas del Noroeste. Concurrentemente, la evolución de la depresión témica, que es más pronunciada en la vecindad de la región que estudiamos, favorece, en las capas inferiores, el aflujo de aire tropical húmedo desde el noreste; por otra parte, en esta latitud no existe el movimiento subida en las capas medias, que es característico de la parte central de cada cinturón antíciclónico.

De tal forma, las considerables precipitaciones estivales ocurren desde esta masa de aire tropical húmedo que, como una corriente de inercia de los alisios, se mueve contra el sistema serrano. También pueden ocurrir por la inestabilidad propia de la masa naciente por un intenso calentamiento desde abajo y favorecida por cambios en la altura; o como consecuencia del avance del frente frío que interrumpe casi periódicamente la depresión témica referida.
Es así como durante el semestre cálido se registra aproximadamente el 90 % del volumen total anual de las precipitaciones, que ya de por sí es considerable.

En cuanto al régimen térmico diremos que es el propio de una situación ubicada en tan baja latitud, con la particularidad de que al no existir sistemas montañosos, que crecen el continente de este a oeste se halla sometida frecuentemente a la invasión de aire frío desde el sur, sobre todo en la estación invierno; ya como avance de masas de aire frío que se deben a la actividad frontal referida anteriormente, o a la evolución de los anticiclones invarnales móviles y de poca altura, que se desarrollan con relativa rapidez por la gran llanura Pamplónica.

Desde el punto de vista sistemático hemos definido el clima de la selva Tucumano-oranense, de acuerdo con la nueva clasificación de THORNTHWAITE (BURGOS Y VIDAL, 1951), como húmedo (Bi), mesotérmico (Ei), con pequeña variación de la humedad efectiva \(r \) y con una escasa concentración estival de la eficiencia térmica \(d' \).

En el Cuadro I hemos incluido una serie de valores agroclmáticos de las cuatro estaciones meteorológicas, cuya situación resulta la más próxima a la selva higrófila, pero en el distrito de transición entre esta y el Parque Chaqueño.

Los valores del régimen hídrico que se incluyen entre ellos, se han obtenido por cálculo según el método empírico de THORNTHWAITE (1948).

Dentro del macroambiente que hemos descrito colegimos para esta investigación su porción norte, que comprende el dominio del Valle del Río San Francisco (Fig. 1). Desde Ingenio Lebeda hasta Pichanal, este caudaloso río se desplaza por un ancho valle con un declive suave hacia Pichanal. Esta última localidad está situada en la porción más baja del valle desde que en ella confluyen las aguas del río San Francisco y las del Bermejo que, desde el norte, baja en dirección su Sud Sudeste hasta Pichanal, para girar luego hacia el este.

El río San Francisco constituye en esta región el límite norte entre la selva Tucumano-oranense y el Parque Chaqueño. Es sorprendente como esta barrera física se impone al efecto del clima en la determinación del tipo ecológico de la vegetación. Sin embargo, sobre su margen ocidental, la selva muestra un carácter de transición a juzgar por algunos elementos de su composición florística.

En el extenso valle, que limita esta margen y las otras serranías, es donde se ha desarrollado la agricultura tropical y subtropical existente, luego que ha sido explotado y extirpado el bosque. Ahi es, precisamente, donde se han implantado importantes cultivos de caña de azúcar, frutales cítricos, palma, mango, chirimoyos, banana y una próspera producción de hortalizas de invierno.

Para ello y debido al déficit de agua en los meses inviernales, la economía agrícola está supeditada al riego. Sistemas aun rudimentarios de canalización de los afluentes del río San Francisco aseguran la explotación actual de una superficie no superior a las 20.000 Has., entre San Pedro y Orán. Estimamos en forma solo aproximada que una sistematización racional de los regímenes de esos afluentes y de algunos del río Bermejo permitirían el aprovechamiento de una superficie 10 veces mayor.
III — MATERIAL Y MÉTODO

Para efectuar las instalaciones se tuvo en cuenta la necesidad de caracterizar los microclimas más contrastados en la selva, de modo tal que permitieran, a su vez, una comparación con el clima general del ancho-valle del río San Francisco cuyo régimen climático es conocido.

Por la circunstancia de que los afluentes del río San Francisco y algunos del Bermejo corren en dirección aproximada de este-oeste, las serranías que separan sus cuencas, con sus ejes mayores en esa misma dirección, presentan en forma más conspicua una disposición al norte y otra al sur. Pequeños afluentes secundarios, sin embargo, de régimen torrencial durante el verano y algunos hasta pantanosos en invierno, descienden con gran declive de estos "filos" (1) y su cuenca, no muy profunda, constituye ocasionalmente exposiciones hacia estos dos rumbos de tanto contrastes térmico.

Las instalaciones en la selva se efectuaron en uno de estos "filos" en la margen norte del río Piedras a la altura de su conflución con el río Pantanoso. En la Fig. 2 se puede apreciar un detalle del microrelieve de la región y la ubicación de las estaciones.

Además, en el valle del río San Francisco se instalaron una estación completa en Urundel y dos estaciones en el paraje denominado "El Bananal", al pie de las primeras serranías que limitan el mismo.

Las instalaciones fueron de dos tipos según el instrumental:

1) Estaciones completas: Abrigo meteorológico reglamentario (tipo B), termómetros seco, húmedo, de máxima y de mínima, termógrafo, higrógrafo, evaporímetro de Piché, evaporígrafo, piranómetro de Robitzsch, geotermómetro de 0.10 m de profundidad, termómetros de mínima de irradación y de superficie, y anemómetro.

2) Estaciones de emergencia: Abrigo ad hoc, compuesto de dos tablas en ángulo dieciocho grados, que protegían el instrumental de la irradación desde el norte y del este a 1.50 m, de altura sobre el suelo, termómetros de máxima y de mínima, termómetros de mínima de irradación y de superficie del suelo, y geotermómetros de 0.10 m de profundidad.

Las estaciones se designaron y ubicaron en la siguiente forma:

A. — En la selva:

Estación n° 1: de emergencia, en la conflución de los ríos Pantanoso y Piedras, en un sitio libre totalmente de vegetación, pero durante la noche sometido a intercambio de calor con el cauce de ambos ríos.

Estación n° 2: de emergencia, ubicada sobre la margen norte del río Piedras al pie del filo; altura sobre la estación n° 1: 10 m.

Estación n° 3: Santo Cristo, completa y de emergencia. Exposición al Norte sobre una pendiente de casi 30º, y a 100 m. de altura sobre la estación n° 1.

(1) Véase la figura 2 que se adjunta para destacar a las mismas de 269 a 300 m de altura que caracterizan el relieve de la región.
Estación no 4: de emergencia, sobre la cumbre del "filo", a 240 m sobre la estación no 1.

Estación no 5: Arroyo del Tigre, completa y de emergencia. Exposición nor-noreste del "filo" sobre una pendiente de casi 30° en las nacientes de un arroyo seco en invierno que desemboca en el río Seco y que en su última porción se torna pantanoso en invierno. A 170 m sobre el nivel de la estación no 1.

Estación no 6: de emergencia, en la margen derecha del mismo arroyo anterior, que aquí, donde la pendiente se suaviza para ser casi plana, es pantanoso. A 90 m sobre el nivel de la estación no 1.

B. - En el valle del río San Francisco:

Estación no 7: Urundel (Central). Completa y de emergencia. Ubicada en el puelo de Urundel sobre un terreno plano, con vegetación herbácea esparsa, libre de obstáculos. A 450 m sobre el nivel del mar y a unos 300-600 m por debajo del nivel de la estación no 1. A 300 m de distancia de la margen occidental del río San Francisco.

Estación no 8: Bananal (Romero), de emergencia. En el paraje "El Bananal". Declive de 5°. Exposición suroeste. Próxima a la base de una ladera de mayor declive.

Estación no 9: Bananal (Pino) de emergencia. En el paraje "El Bananal", en una parte casi llana que forma un extenso bolsón sin desagüe. En el Cuadro II siguiente resumimos la lista de estaciones y los detalles de su ubicación.

CUADRO II. - Características de la ubicación de las estaciones

| Estación | Altura con relación a la Est. 50° 8 | Altura sobre el nivel del mar | Elevación del terreno | Raza
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Emergencia</td>
<td>1.060 Lhano</td>
<td>1.060</td>
<td>Lhano</td>
<td>1.060</td>
</tr>
<tr>
<td>2 Emergencia</td>
<td>1.060</td>
<td>1.060</td>
<td>Lhano</td>
<td>1.060</td>
</tr>
<tr>
<td>3 Emergencia</td>
<td>1.060</td>
<td>1.060</td>
<td>Lhano</td>
<td>1.060</td>
</tr>
<tr>
<td>4 Emergencia</td>
<td>1.060</td>
<td>1.060</td>
<td>Lhano</td>
<td>1.060</td>
</tr>
<tr>
<td>5 Emergencia</td>
<td>1.060</td>
<td>1.060</td>
<td>Lhano</td>
<td>1.060</td>
</tr>
<tr>
<td>6 Emergencia</td>
<td>1.060</td>
<td>1.060</td>
<td>Lhano</td>
<td>1.060</td>
</tr>
<tr>
<td>7 Emergencia</td>
<td>1.060</td>
<td>1.060</td>
<td>Lhano</td>
<td>1.060</td>
</tr>
<tr>
<td>8 Emergencia</td>
<td>1.060</td>
<td>1.060</td>
<td>Lhano</td>
<td>1.060</td>
</tr>
<tr>
<td>9 Emergencia</td>
<td>1.060</td>
<td>1.060</td>
<td>Lhano</td>
<td>1.060</td>
</tr>
</tbody>
</table>

Los altas sobre el nivel del mar son aproximadas por haberse establecido en hora al desvío del río Pecesca, en un camino transitado de tránsito.

La fig. 2 (parte superior) ilustra el microrelieve de la región en forma aproximada, según un plano que nos fue cedido gentilmente por la Administración de la Finca Urundel, y el perfil A-B de la misma figura muestra un corte del "filo" observado en la selva, según la mediación efectuada por los autores.

La estación completa de Urundel (Central) se observaba tres veces por días a las horas regulamentarias: las estaciones completas de la selva, dos veces por día (8 y 14 horas), para la corrección y el contraste de los aparatos registradores con los de lectura directa, y las estaciones de emergencia se observaban generalmente a las 8 horas.

Las instalaciones se comenzaron el 23 de julio y quedaron completas el 28 del mismo mes. En forma continua estas observaciones prosiguieron hasta el 31 de agosto.

La comparación de los valores térmicos de las estaciones con abrigo de emergencia y con abrigo reglamentario (tipo B), donde estos se observaban simultáneamente, nos ha permitido establecer el valor medio de irradiación del abrigo de emergencia, como se muestra en el Cuadro III.

CUADRO III. - Error de irradiación del abrigo de emergencia durante el mes de agosto de 1950

<table>
<thead>
<tr>
<th>Estación</th>
<th>Error de irradiación del abrigo de emergencia</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 Santa Clara</td>
<td>+2,4</td>
</tr>
<tr>
<td>5 Arroyo del Tigre</td>
<td>+2,9</td>
</tr>
<tr>
<td>7 Urundel (Central)</td>
<td>+1,6</td>
</tr>
</tbody>
</table>

Estos valores, además de su aplicación para la corrección de las observaciones de los abrigos de emergencia, con el objeto de hacerlos comparables con las observaciones climatológicas del abrigo reglamentario (tipo B), nos indican lo poco adecuado que resulta este último para clima tropical. Así, en Urundel (Central), donde los abrigos se hallan expuestos libremente, la irradiación diurna por la falta de vegetación arbórea, el abrigo reglamentario durante el día, registró temperaturas muy próximas al de emergencia, que sólo protegía parcialmente a los termostómetros de la irradiación.

Durante los últimos días del mes de julio y primeros días de agosto cubrió la región estudiada una gran masa de aire polar, y durante unos días del mes de agosto se sintió el empuje de aire tropical. Esto nos ha facilitado estudiar el proceso microclimático bajo condiciones muy diversas, a pesar del escaso tiempo que duraron las observaciones.

En el Cuadro IV se muestran algunas características de los suelos sobre los cuales se instalaron estaciones microclimáticas por la influencia que ellas pueden ejercer sobre los elementos microclimáticos.

Podemos ver así que, en general, en las pendientes y en el fondo de los valles, los suelos son sueltos y están formados por elementos grasesos y medianos principalmente provenientes de arrastres y depósitos aluviales. Solamente en la cumbre de los filetes se nota una mayor proporción de los elementos finos como la arcilla, y resultan más compactos especialmente en el subsuelo.

En general son de color rojizo y rojizo parduzco, de aspecto laterítico en parte, como es común en los suelos de las regiones tropicales. En las partes donde la acumulación aluvial es intensa, como en el fondo de los valles, el suelo es azonal. Pero en donde predomina la temperización, como en las laderas y en las cumbres planas, protegidas por una vegetación densa, se observa una diferenciación de horizontes que a veces es muy marcada.
En la exposición al sur debido a su mayor humedad y menor temperatura se observó un primer horizonte negruzco muy rico en humus.

Los valores del pH indican que los suelos son en general ácidos en aquellas situaciones de suelos bien drenados, que durante el invierno no reciben humedad de origen secundario. En cambio, a partir de la segunda parte de los meses internos, la humedad es mayor por aporte de agua de drenaje de vertientes o por efecto de condensaciones nocturnas, y por tanto en donde la evaporación excede a la precipitación local, los suelos son alcalinos y muestran un pH elevado.

En cuanto a los valores de la humedad actual diurna que en situaciones expuestas a la irradiación diurna normal, aun en la selva se aproximan al coeficiente de marchitez.

Tal es la norma en las estaciones expuestas al norte, en la sombra del "filo" y en Urundel. La estación n° 8 debe descartarse por estar muy próxima a un canal de riego. Esta observación confirma los datos del régimen hídrico que dimos en el segundo capítulo de este trabajo entre los cuales se acusaba el valor de 0 mm útiles en el mes de agosto, según el cálculo por el método empírico de THORNTHWAITE.

En las estaciones expuestas al sur, como las n° 2 y n° 3, el contenido de humedad del suelo es sensiblemente superior y esto influye notablemente sobre su régimen microclimático, como veremos más adelante.

La vegetación de la selva estudiada se caracteriza por la dominancia de especies hortícolas, de follaje persistente o temporalmente caduca. Suponemos que este último carácter es inducido en forma principal por la sequía invierna y en este estado fenológico se encontraba en la oportunidad del relevamiento microclimático.

Sin embargo, algunas pocas especies de floración precoz se hallaban en flor entre las que se piden identificar a: *Tecoma Acelerator*, *Justicia fasciculata*, *Justicia Schreberi*, *Chamomilla atriplicifolia*, *Vernonia simplex*, *Vernonia rotundifolia*, *Vernonia rotundifolia*, *Minthia sp.*, *Mixtia sp.* y *Abutilon sp.*

<table>
<thead>
<tr>
<th>N° de estación</th>
<th>Características hortícolas n° 2</th>
<th>Características hortícolas n° 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

IV. **FORMACIÓN DE LAS HELADAS EN EL NOROESTE ARGENTINO**

Con el objeto de caracterizar la situación sinódica que determina la ocurrencia de las heladas inviernales en el valle del río San Francisco, hemos considerado las que correspondieron a los registros de este fenómeno efectuados por los corresponsales del Servicio Agronomico de Heladas. Esta ha sido la única fuente de información en este caso porque, debido a la supresión de las estaciones del valle, se carece de otros registros climatológicos oficiales en los últimos años.

La situación más típica que procede a la formación de las heladas inviernales en el valle del río San Francisco se caracteriza por un potente anticiclón a tipo "inversal", es decir, frío, que existe solamente en las capas inferiores de la atmósfera, y que se dispara con relativa rapidez favorecido por la gran depresión o llanura Pampeana.

Este anticiclón se forma como consecuencia de un fuerte empuje de aire polar desde el sur, y tiene su máxima intensidad cuando el centro...
cubren las regiones de San Luis, Córdoba y Santiago del Estero, muchas veces con una capa hasta el norte hasta Bolivia.

Desde el flanco norte de esta anticiclón llega el aire polar al extremo noroeste argentino, principalmente como corrientes del sudoste; a la vez, el levantamiento orográfico que experimenta esta masa de aire relativamente seca favorece la formación de una nubosidad permanente, mientras dure este estado de tiempo, compuesta de nubes altas y medias que puede ocasionar lluvias ligueros, conocidas localmente como "garritas".

En la fase de disminución de este tipo de anticiclón, que generalmente al cabo de dos o tres días se ha desplazado hasta el este-noreste, se disipa la nubosidad formada en ocasión del avance del aire frío. El descenso térmico del aire y el suelo que determina la inversión del aire polar, y la fuerte irradiación nocturna, que se ve favorecida por este tipo de masa de aire relativamente seca y por la duración de las noches interiores, producen como consecuencia las heladas que podrían presentarse durante varios días consecutivos.

La Fig. 3 muestra la porción más austral de Sud América con el estado básico promedio de los días en que la situación sinóptica del tiempo presentó las características típicas descriptas anteriormente. Y que, además, correspondieron a fechas con registros de heladas, según el Servicio Agrometeorológico de Heladas, desde el año 1939 hasta la fecha.

En el Cuadro V, se detallan esas fechas y los daños ocasionados por las heladas que les sucedieron.

<table>
<thead>
<tr>
<th>Día en que se produjo el</th>
<th>Fecha</th>
<th>Día</th>
<th>Masa</th>
<th>Día</th>
<th>Masa</th>
</tr>
</thead>
<tbody>
<tr>
<td>1939 VII 22</td>
<td>1939 VII 22</td>
<td>22, 23 y 24</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1939 VIII 21</td>
<td>1939 VIII 22</td>
<td>22, 23 y 24</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1941 V 26</td>
<td>1941 V 26</td>
<td>26, 27 y 28</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1941 IX 5</td>
<td>1941 IX 5</td>
<td>5 y 7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1942 VI 9</td>
<td>1942 VI 9</td>
<td>9 y 12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1942 VI 18</td>
<td>1942 VI 18</td>
<td>18, 19, 20, 21</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1943 IX 15</td>
<td>1943 IX 15</td>
<td>13, 14 y 15</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1946 VI 22</td>
<td>1946 VI 22</td>
<td>24, 25, 26 y 27</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1946 VII 16 y 19</td>
<td>1946 VII 19</td>
<td>18, 19, 20 y 21</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1946 VIII 23</td>
<td>1946 VIII 24</td>
<td>26</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1947 VII 9</td>
<td>1947 VII 9</td>
<td>10 y 11</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1950 VII 2</td>
<td>1950 VII 2</td>
<td>4, 5 y 6</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Seguidas por observaciones tomadas de cita por los autores.
V. — ANÁLISIS MICROCLIMÁTICO DEL MES DE AGOSTO 1950

A. — Temperaturas mínimas absolutas y su probabilidad

Durante los últimos días del mes de julio y primeros días del mes de agosto de 1950 se estableció sobre el país una situación sinóptica, de las que hemos descrito como típicas para la formación de las heladas, pero caracterizada por un anticiclón de mayor potencia que el de la situación de julio; con un centro de 1.040 milibares, y la continuación de aire polar fueron factores concurrentes para producir un marcado y sostenido descenso de la temperatura del aire y del suelo durante esos días. El día 1° y 2 de agosto se produjeron garzas ligeras tanto en la selva como en Urdinal Central. El sistema nuboso se mantuvo a diez veces la altura del día 3 y a las 21:30 el cielo era claro y el aire calmo, condiciones éstas muy favorables para una irradación nocturna muy intensa. A la mañana siguiente se había producido una helada general que se registró, con menor intensidad y en algunas partes, en los dos días siguientes.

Con el objeto de conocer la intensidad relativa del fenómeno producido nos pareció conveniente investigar su anormalidad por medio del cálculo de probabilidades. El resultado de este análisis puede verse a continuación en el Cuadro VI que contiene las minimas registradas en el noroeste argentino, así como consecuencia de la situación sinóptica que se presentó el 2 de agosto. Puede verse así que la intensidad de la helada resultó particularmente extremo en Jujuy, en donde son probables mínimas tanto o más bajas que las registradas en esa fecha una vez cada 33 años (P = 3%). En el valle del río San Francisco la intensidad de la helada no fue tan extremadamente inusual, ya que cabe esperar fríos inusuales o más intensos una vez cada 14 años (P = 7%); fueron incluidos en el mismo cuadro las minimas registradas en el abrigo reglamentario, y en el expósito al norte, Arroyo del Tigre (Estación n° 5) no se registraron temperaturas bajo cero en esta oportunidad, y en ese tipo de instalación.

Ahora bien, si suponemos que la variabilidad de las temperaturas minimas, en esas estaciones de la selva, es la misma que en Urdinal, es decir, que las derivaciones típicas en todas las estaciones son de la misma magnitud, resulta que en la estación Arroyo del Tigre es probable que ocurran temperaturas inferiores a 0° en un año de cada 17 (P = 6%), y en la cumbre del "fileo" en un año de cada cinco (P = 2%). Este procedimiento, si no es absolutamente exacto por el carácter microclimático de las estaciones, lo consideramos suficientemente aproximado para los fines prácticos.

Con el objeto de facilitar su comparación con los valores establecidos en el párrafo anterior, agregaremos aquí en el valle del río San Francisco, en Urdinal (Central), aplicando este mismo cálculo, resulta probable que ocurran temperaturas inferiores a 0°C en un 77% de los años.

B. — Radiación solar y temperatura del suelo.

Los datos de radiación solar se tomaron por medio de 3 pirómetros de ROBBITZCH, instalados en la estación Urdinal (Central) y en la selva en la exposición al norte, estación n° 5, Arroyo del Tigre, en la sur, estación n° 3, Sanco Cristo.

CUADRO VI.— Probabilidad de superar las temperaturas mínimas jamás o inferiores a las registradas en 1950 en el noroeste de la República Argentina. (Valores observados en el valle y valores extrapolados en la selva).

<table>
<thead>
<tr>
<th>Estación</th>
<th>Período</th>
<th>Min. año 1950</th>
<th>Medio mín. año</th>
<th>Med. a-f</th>
<th>Día</th>
<th>Probabilidad de que se registren mínimas inferiores o iguales a las registradas en 1950</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tucumán</td>
<td>1901-47</td>
<td>-1.6</td>
<td>-0.9</td>
<td>+0.6</td>
<td>1.9</td>
<td>62%</td>
</tr>
<tr>
<td>Rivadavia</td>
<td>1901-46</td>
<td>-1.9</td>
<td>-1.0</td>
<td>-2.2</td>
<td>2.1</td>
<td>13%</td>
</tr>
<tr>
<td>Jujuy</td>
<td>1901-47</td>
<td>-2.1</td>
<td>-1.4</td>
<td>-2.2</td>
<td>2.2</td>
<td>5%</td>
</tr>
<tr>
<td>Antalamaya</td>
<td>1901-47</td>
<td>-1.7</td>
<td>-2.7</td>
<td>+1.0</td>
<td>1.3</td>
<td>75%</td>
</tr>
<tr>
<td>La Quiaca</td>
<td>1901-47</td>
<td>-2.7</td>
<td>-1.4</td>
<td>+2.2</td>
<td>2.2</td>
<td>5%</td>
</tr>
<tr>
<td>Jujuy</td>
<td>1901-47</td>
<td>-2.2</td>
<td>-2.2</td>
<td>-2.2</td>
<td>1.6</td>
<td>8%</td>
</tr>
<tr>
<td>Jujuy</td>
<td>1901-47</td>
<td>-2.2</td>
<td>-2.2</td>
<td>-2.2</td>
<td>1.6</td>
<td>8%</td>
</tr>
<tr>
<td>Urdinal</td>
<td>1901-47</td>
<td>-1.9</td>
<td>-1.9</td>
<td>-1.9</td>
<td>1.9</td>
<td>75%</td>
</tr>
<tr>
<td>Sanco Cristo</td>
<td>1901-47</td>
<td>-1.9</td>
<td>-1.9</td>
<td>-1.9</td>
<td>1.9</td>
<td>75%</td>
</tr>
</tbody>
</table>

1 Valor del mínimo observado en cada una de las estaciones en relación a los valores mensuales de las estaciones de Urdinal en el mes de agosto de 1950.

2 Valores extrapolados considerando en cada estación la temperatura mínima de la estación en julio según el promedio de las estaciones de la selva durante el mes de agosto de 1950.

Las sumas diarias de irradación obtenidas resultaron válidas en el aspecto climático regional, desde qué su comparación con las estaciones de Salta y Rivadavia dieron resultados muy similares. Así durante 17 días claros del mes de agosto la relación Rivadavia/Urdinal fue de 97%, y durante 16 días claros se obtuvo 102% en la relación Salta/ Urdinal. Del mismo modo, en 6 días parcialmente nublados se obtuvo...
un 105 % para Rivadavia/Urundel, y en 8 días parcialmente nublados un 101 % para Salta/Urundel. Para los mismos días completamente nublados, 2 y 3 de agosto, la Comparación Salta/Urundel resultó que un 80 %. circunstancia que se explica por el régimen propio de los días nublados (diferente especies y naturaleza de las nubes, etc.).

El valor microclimático de los registros de irradiación obtenidos tiene significado para la comparación entre la irradiación que se recibe sobre un plano horizontal en el interior de la selva en este mes de reposo invierno, y la que se recibe en campo abierto. Juzgamos, en cambio, que estos registros carecen de valor para comparar el distintivo g20 de irradiación de las distintas exposiciones en el interior de la selva. La circunstancia de que la estación Santo Cristo (nº 3), expuesta al sur, se ubica en un lugar con menos vegetación arbórea que Areco del Tigre (nº 5) expuesta al norte, originó que la pequeña superficie sensible de los instrumentos en el sotobosque estuviera más afectada por la sombra de obstáculos en la exposición norte (ver Fig. 8, 1 y 6). Por otro lado, la posición horizontal de los instrumentos no coincide con el plano de inclinación de las exposiciones. En este caso, aun suponiendo una igualdad absoluta en los obstáculos que interfieren la irradiación de ambos instrumentos, la unid. al norte se recibe mas radiación, y en la exposición al sur menos, que la que puede registrar el instrumento. A este respecto resulta altamente documental el exhaustivo trabajo de KAEMPFERT (1942) sobre este tema.

![Diagrama de radiación solar en la selva](image)

Ambas consideraciones anteriores explicas porque nuestros instrumentos no hubiéramos mayor radiación total en la posición sur que en la norte, lo cual aparentemente no coincide con el régimen térmico del aire, que medidas más adelante, ni con las temperaturas del suelo. Aun cuando en el suelo existen localizaciones en que la vegetación impide casi totalmente la recepción de la radiación solar directa por el suelo desde alturas superiores a 1.50 m., las situaciones similares a las estaciones nº 3 y nº 5 son bastante frecuentes y extendidas durante la estación invierno.

En la Fig. 4 hemos representado la relación entre la radiación total recibida en la selva y Urundel, durante los días claros. Esta relación variaba de un 20 a un 50 % en el mes de agosto, es decir, que sobre un plano horizontal en la selva se recibe entre 1/5 y 1/2 de lo que se recibe en campo abierto.

La causa del progresivo aumento de la radiación en la selva durante el mes debe atribuirse al desplazamiento del sol y a la distribución parcial de los obstáculos en cada lugar.

En los días parcialmente nublados se nota una mayor irregularidad en los valores, propia de las características de los días parcialmente nublados. No obstante que el material disponible es algo escaso, se nota un ligero aumento de los valores relativos de gase de radiación en la selva en estos días.

![Gráfico de temperatura](image)

Los valores máximos de radiación recibida durante algo más de la primera mitad del mes de agosto se registraron en los días claros con masa de aire polar (364 a 447 g/cm² en Urundel, del 4 al 6/VIII). Los días con masa de aire tropical, con mayor contenido de vapor de agua en la atmósfera, los valores registrados fueron inferiores. Si bien los valores de radiación obtenidos no tienen significado para comparar las exposiciones entre sí, como se ha dicho anteriormente, la temperatura del suelo nos permite apreciar de una manera aproximada el valor relativo de la radiación recibida en ambas exposiciones. En la Fig. 8 hemos representado la marcha de la temperatura del suelo a las 8 horas, observación que resulta la más próxima al momento en que culmina la pérdida de calor del suelo por la radiación nocturna, y a las 14 horas, observación próxima al de la máxima recepción de calor de la irradiación diurna. Se muestra también el estado del cielo.

Vemos así, en el material disponible, que el suelo es más frío en la selva que en campo abierto, porque la vegetación selvática intercepta gran parte de la radiación solar. Esta diferencia es más notable en los días con masa de aire tropical. Se puede observar, además, que el suelo es notablemente más frío en la exposición al sur, en la selva, que en la exposición al norte. Por
otra parte, en los días claros después de tiempo nuboso el calentamiento de la exposición norte aumenta, rápidamente, con la misma intensidad que en campo abierto, mientras que en la exposición al sur el suelo sigue enfriándose el día siguiente algún tiempo después de la disipación de los sistemas nubosos, para aumentar su temperatura sólo lentamente en los días posteriores. En esto vemos el exceso poder de calentamiento de la radiación difusa, y la influencia del mayor contenido de humedad del suelo en la exposición al sur, según vimos anteriormente (Cuadro IV).

C. - Temperatura y humedad del aire.

Con el objeto de caracterizar el régimen invernal de la temperatura y humedad del aire en los microclimas estudiados, hemos calculado el valor horario de estos dos elementos en dos series de días consecutivos. La primera de estas series abarca el período del 1 al 6 de agosto, que se caracterizó por el dominio típico de una gran masa de aire polar, la segunda correspondió al período del 15 al 20 de agosto, en cuyos tres primeros días la región estudiada estuvo sometida a la influencia de una masa de aire tropical. Los tres días siguientes esta masa de aire ya se había transformado parcialmente, pero debieron incluirse en el promedio con el fin de suavizar las curvas.

En la Fig. 6, se han representado los valores obtenidos y la comparación correspondiente entre ambas exposiciones en la selva y la estación Uramdél (Central), y la Fig. 7 (1, 2, 3 y 4) a su vez, la de las exposiciones entre sí.

Puede verse así, que la temperatura del aire en el interior de la selva es casi permanentemente inferior a la del valle del río San Francisco, siendo la variación diaria de menor amplitud. La primera de estas características es permanente y más notable en los días una masa de aire tropical, y en la comparación entre la exposición sur y Uramdél (Central) (Fig. 6, 7).

El calentamiento en las horas de la mañana resulta más intenso en la selva que en el campo llano de Uramdél, por cuanto la exposición que denominamos prácticamente norte, en realidad es nororiente y también por efecto de la propia inclinación.

Además en la Fig. 6, 3 puede observarse que en la exposición norte, cuando domina el aire tropical, las temperaturas nocturnas son generalmente inferiores a las de Uramdél (Central) salvo en las horas de mínima. Estos últimos valores son en su mayoría superiores en la selva. Cuando la masa de aire es polar (Fig. 6, 11), en cambio, circunstancia que origina el cierre de bóveda en las horas nocturnas, y en la exposición referida, se registran invariablemente temperaturas inferiores a Uramdél, y las temperaturas mínimas diarias muestran en igual sentido, una mayor diferencia.

En la exposición sur, bajo condiciones de masa aérea tropical, las temperaturas son siempre inferiores a las de Uramdél (Fig. 6, 7). En las horas nocturnas esta diferencia tiende a disminuir. Cuando la masa de aire es polar se mantiene el sentido de esta diferencia, pero en las horas nocturnas es de muy pequeña magnitud (Fig. 6, 5). Agregaremos aquí, que en los días en que la temperatura es muy cercana o más baja que 0°, el
sentido de la diferencias se invierte y las mínimas resultan más suaves en la selva.

Si observamos el comportamiento de la marcha diaria de la humedad del aire podemos ver que con masa de aire polar aquélla es permanentemente superior en la selva, salvo en la exposición sur, en donde en las horas de mínima se igualan (Fig. 6, 2 y 6).

Consideremos así, que la suavidad de las temperaturas mínimas en la selva, particularmente superiores a las de Urundel en los días con heladas, se deben a la liberación del calor latente de condensación, que proviene el abundante rocío producido en tales circunstancias, como consecuencia de la mayor humedad de la selva.

Para destacar aquí la importancia de este fenómeno, transcribiremos algunos párrafos de nuestro diario de viaje correspondiente al día 4 en que se produjo la helada más intensa de las que ocurrieron en el mes de agosto de 1950.

"Con el objeto de apreciar el daño producido por la helada, el Ingeniero Burgos, el observador Fracaro y el bosquero Mendoza recorrieron "7 kilómetros del valle del río Piedras hacia el oeste o Valle Morado".
"Al salir, el sol no había transpuesto los filos de la margen izquierda "que es la explorada. Pudieron observar los efectos de la helada producida que llegó a −2.7°C en un termómetro expuesto sin protección a 1.50 m de altura, en el campamento. Un termómetro en el interior "de la carpa registró la mínima de 3°C".
"Se pudo observar la formación de escarcha sobre pales y hojas de "plantas expuestas libremente a la irradiación, no así en las protegidas "en el interior del bosque. Cuando el sol comenzó a calentar la colada de "los árboles más altos de la margen explorada del río, aproximadamente "a las 9.30 se pudo observar que, como una lluvia intensa, caían gotas "de la copa de los árboles. El cielo estaba completamente despejado. Se "supuso que esa precipitación provenía de un fuerte rocío o más bien "del derretimiento de la escarcha formada en la capa de mayor irradia-

El fenómeno duró aproximadamente de 20 a 30 mi-

utos".

Bajo las condiciones de masas de aire tropical, la concentración de la humedad tiende a ser superior en la selva solamente durante las horas diurnas (Fig. 6, 4 y 8). Aquí la concentración de la humedad sigue una marcha semejante a la de la temperatura, como ocurre en las capas bajas de la atmósfera sobre superficies de agua libre. Ello se debe a que en la selva, como hemos demostrado anteriormente, existe mayor humedad disponible en el suelo y subterráneo, que es cedida a la atmósfera por vaporización en la medida que la temperatura del aire lo permite.

En Urundel, en cambio, al no existir el mismo tipo de vegetación la concentración de la humedad tiende a disminuir en las horas de máxima irradiación diurna, para registrar el máximo valor en las horas de la puesta del sol.

Debemos señalar aquí que, en las diferencias de la marcha de la hu-

medad, según se trate de masas de aire polar o tropical, juegan un rol importante los movimientos convectivos del aire en la capa baja de la atmósfera, que son más intensos cuando la masa es tropical y en campos desérticos de vegetación alta, donde el suelo recibe más directamente
la irradiación diurna. En estas condiciones, las capas bajas enriquecidas con vapor de agua por la evaporación tiende a intercambiar su humedad con las capas superiores de menor concentración de humedad.

La comparación entre las exposiciones norte y sur en la selva nos ofrece las siguientes observaciones: la exposición norte es siempre más caliente que la sur, tanto si la masa de aire es tropical como polar, aunque la diferencia es mayor en magnitud en el caso de la capa inferior de la atmósfera. En el caso de la capa superior (Fig. 7, 1 y 3), la concentración de la humedad es mayor en la exposición sur, en las horas diurnas, y esto es más notable con masas de aire tropicales (Fig. 7, 2 y 4).

Las mismas causas que expresamos en las comparaciones anteriores determinan estas características, esto es, el mayor calentamiento por irradiación diurna, la mayor turbulencia térmica y la menor humedad del suelo en la exposición norte.

cuadro VII. — Valores medios de temperatura y relaciones absoluta del mes de agosto de 1950 en °C. (En bastillaclips los valores corregidos mediante el error de irradiación probable).

<table>
<thead>
<tr>
<th>Estaciones</th>
<th>Medio</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>wsp.</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>1</td>
<td>29.4</td>
<td>8.7</td>
<td>19.0</td>
<td>20.7</td>
<td>-2.1</td>
<td>18.7</td>
<td>17.6</td>
<td>18.4</td>
<td>-2.2</td>
<td>17.6</td>
</tr>
<tr>
<td>2</td>
<td>26.8</td>
<td>8.4</td>
<td>17.6</td>
<td>18.4</td>
<td>-2.2</td>
<td>18.4</td>
<td>17.6</td>
<td>18.4</td>
<td>-2.2</td>
<td>18.4</td>
</tr>
<tr>
<td>3</td>
<td>26.2</td>
<td>9.6</td>
<td>17.8</td>
<td>19.4</td>
<td>-1.5</td>
<td>20.0</td>
<td>19.0</td>
<td>18.9</td>
<td>-1.5</td>
<td>19.0</td>
</tr>
<tr>
<td>4</td>
<td>26.1</td>
<td>12.5</td>
<td>19.2</td>
<td>18.8</td>
<td>-0.3</td>
<td>17.4</td>
<td>15.0</td>
<td>17.0</td>
<td>-0.3</td>
<td>15.0</td>
</tr>
<tr>
<td>5</td>
<td>28.0</td>
<td>11.6</td>
<td>19.8</td>
<td>18.5</td>
<td>-0.4</td>
<td>18.0</td>
<td>15.6</td>
<td>15.4</td>
<td>-0.4</td>
<td>15.6</td>
</tr>
<tr>
<td>6</td>
<td>6.7</td>
</tr>
<tr>
<td>7</td>
<td>29.8</td>
<td>9.7</td>
<td>19.8</td>
<td>20.4</td>
<td>-2.4</td>
<td>18.2</td>
<td>16.2</td>
<td>18.0</td>
<td>-2.4</td>
<td>16.2</td>
</tr>
<tr>
<td>8</td>
<td>31.2</td>
<td>9.2</td>
<td>20.2</td>
<td>22.0</td>
<td>-1.4</td>
<td>19.6</td>
<td>17.6</td>
<td>19.5</td>
<td>-1.4</td>
<td>17.6</td>
</tr>
<tr>
<td>9</td>
<td>29.3</td>
<td>7.7</td>
<td>18.5</td>
<td>21.6</td>
<td>-4.4</td>
<td>17.2</td>
<td>15.7</td>
<td>17.4</td>
<td>-4.4</td>
<td>15.7</td>
</tr>
</tbody>
</table>

En el Cuadro VII incluimos los valores térmicos medios del mes de agosto de 1950, que definen en este aspecto singular el clima local de las situaciones estudiadas.

En el análisis usamos los valores correspondientes al abrigo reglamentario. En las estaciones que dispusieron del mismo usamos el valor directo y para las otras los valores obtenidos en los abrigos de emergencia, corregidos con la corrección correspondiente.

Vemos así, que la amplitud media diaria, durante el mes de agosto observado, fue menor en la selva que en el valle del río San Francisco. Además, en las observaciones de la selva puede comprobarse la ley microclimática que establece que la amplitud media diaria decrece con la altura. La menor amplitud diaria corresponde a la estación n° 4 (10.8°C), la intermedia a las estaciones de las pendientes a media altura, Santo Cristo (13.8°) y Armoy de Tigre (13.1°C) y la mayor amplitud a fondo de los valles: valle del río Piedras. Estación n° 1 (18.3°C). El lógico comportamiento de los valores de temperatura media máxima y media mínima, que corresponden a los valores de amplitud analizados, puede observarse en el mismo cuadro.

Al analizar las características de las heladas de 1950 adelantamos el registro microclimático del fenómeno en abrigo reglamentario y su probabilidad para las tres estaciones de la selva, en las que alcanzó menor intensidad y para el valle del río San Francisco.

Agregaremos aquí, que el proceso que caracterizó el momento en que se registraron las temperaturas mínimas diarias fue la inversión térmica de la capa inferior de la atmósfera, proceso éste que resultó tan obvio cuando ocurrieron heladas como cuando la temperatura fue marcadamente inferior a 0°C. En el caso de la estación n° 1 (Central), hemos expresado la inversión nocturna experimentada en la selva, los días con masa de aire polar en que se registraron heladas, y los días con masa de aire tropical, según los registros observados en los termómetros de mínima de los abrigos de emergencia.

Puede observarse así, aun cuando la distribución vertical de la temperatura sobre las laderas de una sierra no coincide exactamente con la distribución vertical en el aire desde el fondo de los valles, que la capa invertida en la selva, generalmente supera los 240 m de altura desde el fondo de los valles. Esto se ve favorecido en la selva, lógicamente, por el relieve cuadrado de su dominio, que impide el desplazamiento horizontal del aire y facilita su drenaje gravitacional durante la noche.

Además, en el caso de los días en que se registraron heladas, podemos comprobar que el espesor de la capa con temperaturas por debajo de 0°C correspondió a 220 m durante la primera noche de helada, en la segunda noche quedó reducido a 120 m por el marcado calentamiento diurno y en la tercera fue de menor espesor aún.

De todas las estaciones instaladas, la que registró la mínima más baja fue la n° 9 (abrigó de emergencia = -4.4°C, abrigo reglamentario = -4.0°C), ubicada en un bosque sin drenaje de "El Bananí", mientras que la otra estación situada a unos 500 m de aquella, pero en un pendiente suave, registró una mínima de -1.4°C en el abrigo de emergencia (-1.0°C en abrigo reglamentario).

Si bien, ni en la selva ni en Urundel (Central) hemos registrado mínimas tan bajas como las de la estación n° 9, suponemos fundadamente que ellas se han producido y aún más intensas, a juzgar por los daños en la vegetación natural, en pequeñas localizaciones de la selva donde, además de faltar la vegetación de alto porte se ha visto impedido el drenaje nocturno del aire por la configuración topográfica.

Si tenemos en cuenta las temperaturas mínimas registradas en todas las estaciones, vemos que el factor principal determinante de la intensidad de las mínimas son las condiciones locales que, a su vez, determinan la irradiación nocturna, y que en segundo lugar se destaca el efecto del escurrimiento gravitacional del aire frío. Comprobamos asimismo que la intensidad del frío en la estación n° 6 es casi la misma que en el valle del río San Francisco que se encuentra a un nivel inferior en 690 m.

Esto se explica al tener en cuenta la observación que registramos en nuestro diario de viaje acerca de que invariablemente, durante las horas nocturnas, se establece una corriente de aire, después de las 20 ó 21 horas, luego de formarse la inversión térmica, de aproximadamente 1.5 m/seg en el fondo del valle del río Piedras. Esta corriente que sigue del río aguas abajo durante 10 horas nocturnas y que fué apreciada me-
diante el humo del fuego del campamento, no podría ser portadora de frío por advección más que hasta 9 Km de distancia.

![Image](image.jpg)

Cuadro VIII. —Efectos de las heladas en las relaciones micrometeorológicas de la selva a intensidad de las temperaturas mínimas absolutas

<table>
<thead>
<tr>
<th>Estación</th>
<th>Temperaturas mínimas en el aire en planta digital</th>
<th>Mantel</th>
<th>Uña</th>
<th>Chaîne</th>
<th>Oblea</th>
<th>Pie</th>
<th>Sp.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-1.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>-1.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>-1.9</td>
<td>X</td>
<td>XX</td>
<td>X</td>
<td>O</td>
<td>O</td>
<td>O</td>
</tr>
<tr>
<td>4</td>
<td>0.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>3.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>3.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7 Km al oeste del campamento</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Santa María</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

0 = sin heladas; X = algunas hojas heladas; XX = casi todas las hojas heladas; XXX = planta helada hasta las primeras raíces.

Los cultivos de hortalizas de invierno en el valle del río San Francisco resultaron especialmente dañados, no así los frutales cítricos en los que los perjuicios no resultaron tan evidentes.

En el paraje "El Bananal" los daños fueron menores que en el valle del río San Francisco en aquellas situaciones donde era posible el drenaje del aire frío (Estación n° 8) pero muy intensos en el bolsón que no permitía su derrame. Sobre la margen izquierda del río Piedras el fenómeno fue aún más leve que en la Estación n° 8 y no se produjeron daños. Este efecto se debe probablemente a que durante la noche se destruye parcialmente la inversión térmica por turbulencia cuando el aire frío que pasa encajonado por el río Piedras penetra y se desplaza por la llanura de "El Bananal".

En la selva los daños fueron particularmente intensos en las situaciones sin vegetación arbórea y que no favorecieron el escurrimiento del aire frío. El estado fenológico de la selva, en reposo invernal hizo notable el fenómeno sólo en algunas especies que mantenían el follaje en invierno, pero muchas de ellas resultaron de difícil identificación por no mostrar en esa época sus órganos florales. Con todo y mediante 5 de las especies más comunes hemos podido construir el Cuadro VIII en que se muestra el efecto de las temperaturas mínimas sobre esas 5 especies y que resulta altamente coincidente con el registro de las temperaturas mínimas.

Una exploración hasta 7 Km más al oeste del campamento por el valle del río Piedras, reconocido como Valle Morado, nos evidenció que el daño de estas heladas fue prácticamente de la misma intensidad.
Del mismo modo, un reconocimiento del valle del río Santa María hasta el tosco denominado Cañoncito del río Santa María, aproximadamen-
tente 50 Km más al norte, donde la selva alcanza una mayor manifes-
tación, pudimos comprobar que, si bien los perjuicios en la vegetación natural fueron algo menores, existen situaciones aisladas donde la temperatura debió alcanzar valores próximos o inferiores a -4°C.

El análisis micrométrico de los valores de temperaturas mínimas que hemos realizado y sus daños, nos sugiere como posibilidad agrícola de estas regiones, que usaremos los afluentes del río San Francisco, el cultivo de algunas especies tropicales que toleran temperaturas próximas o algo inferiores a 0°C y que se adaptan a un periodo de sequía invernal intensa. Creemos que en ese tipo de cultivos se encuentran el café, el té y la coca.

En cuanto a las posibilidades de cultivo del tipo de aquellas especies tropicales que sufren perjuicio cuando la temperatura disminuye por debajo de 7°C como la Henna y el cacao, creemos que son completamente inútiles. Mediante el cálculo de probabilidades con los datos que hemos podido registrar en la selva, podemos establecer que existe una proba-
bilidad del 99% de que ocurran temperaturas inferiores a 7°C en si-
tuaciones como las de la estación nº 5, es decir, que en sólo un año de cada millón sería probable una mínima absoluta anual superior a ese valor. Con respecto a las localizaciones como las de la estación nº 4 diremos que esa probabilidad resulta del 99% o sea que sólo en un año de cada 250 es probable que se produzca una mínima absoluta anual superior a 7°C.

VI. AGRADECIMIENTOS

Debemos dejar constancia de nuestro agradecimiento a los señores Ing. agrónomo Roberto A. Ruggiero, observadores Nústor Fracaró y Julio A. Cattaneo, sin cuyo esfuerzo y colaboración no hubiera sido posible obtener un documento de datos en que se basa el trabajo de los doctores Werner Schwertdtfeger, Otto Schneider, Alberto Castellanos, Renato Chini y al Ing. Agronomo Lorenzo R. Parodi por el asesoramiento que nos han dispensado.

Agradecemos igualmente la colaboración del Instituto de Suelos y Agricultura en donde se realizaron los análisis de los suelos estudiados, y al Instituto de Botánica, ambos del Ministerio de Agricultura y Ganadería de la Nación, que tuvo a su cargo la determinación botánica del material colectado durante el recorrido. Igualmente a la Compañía Azucarera Tucumana por los medios y facilidades que nos proporcionó para realizar la observación.

VII. CONCLUSIONES

1) La formación de las heladas en el noroeste argentino generalmente está determinada y precedida por la formación de un potente anticiclón

Vara, a 4°C.

2) No es probable que en la selva se produzca una mínima absoluta anual superior a 7°C.

3) Aunque la mayor fiabilidad de las temperaturas mínimas en los días con heladas en la selva se debe, en gran parte, a la mayor concentración de la humedad en ella existente, como producto de la evaporación y de la menor ventilación. Es decir, que este régimen no sería el mismo si se extrapola la vegetación actual.

4) Una vez que se establece la masa de aire polar en el noroeste argen-
tino, el factor principal que determina la intensidad de las temperaturas mínimas son las condiciones locales para la inadecuación nocturna y en segundo lugar, el escurrimiento gravitacional del aire frío o advección.

5) Del análisis microclimático de la región explorada, se deduce su capacidad para cultivos de especies tropicales que toleran temperaturas próximas o algo inferiores a 0°C, que se adaptan a un periodo de sequía invernal intensa. Entre éstas consideramos interesante la experimentación con plantas del tipo del café, té y coca.

6) Los cultivos tropicales del tipo de la Henna o del Cacao que se perjudican con temperaturas inferiores a 7°C resultan impracticables hasta la latitud en que ha sido explorada la selva.

7) Consideramos del mayor interés efectuar estudios similares al presente en situaciones más al norte, así como aquellos convenientes al régimen hidrográfico de los afluentes del río Bermejo y del San Fran-
cisco para poder establecer con mayor precisión las posibilidades de nues-
trra agricultura tropical en el noroeste argentino.

BIBLIOGRAFÍA CITADA

BONNELL, F. A. y A. L. Veale. 1931. — Los climas de la República Argentina según la clasificación de Thornthwaite. J. Soc. Geol. del S. M. N., Serie Agronomo-
elógica, P. nº 27, pág. 63, 8 figs. Bs. As.

PARSONS, L. F. 1946. — Los regiones fitogeográficas argentinas y sus relaciones con la actividad agrícola. Plantes et leurs cultures en Latin America. Ed. por Fram Ver-
ner, P. 197-198. Walliswe, Nueva.

THORNTWAITE, C. W. 1948. — An approach toward national classification of cli-

...
ARTÍCULOS BREVES

Gradiente vertical de temperatura en la zona central de la cordillera

Por FEDERICO J. PROHASKA y MARIA TERESA IGLESIAS DE GARCIA

1. — Los datos publicados del gradiente térmico en la Cordillera llaman la atención por su reducido valor comparado con otras zonas montañosas del mundo. Siendo la red de estaciones relativamente escasa se hizo necesario, hasta ahora, tomar todas las estaciones disponibles sin tener en cuenta la simultaneidad del periodo, situación oscilográfica y la distancia horizontal, que a veces es de 5º de latitud.

El presente cálculo de los gradientes, para enero y julio, se basa no tanto en un periodo uniforme de 10 años, por lo menos, para cada par de estaciones (excepto la de Cristo Redentor) y a una distancia que no exceda de 1º de latitud, sino que se considera también la geografía de las estaciones en cuestión, es decir, si están situadas en cumbres, pasos o cuestas o en mesetas o valles de altura.

2. — Los gradientes calculados y diferenciados en tal forma para la zona cordillerana entre 22 y 33º S y un par de estaciones en las Sierras de Córdoba se muestran en el Cuadro I, para el mes de enero. Se nota que los gradientes en estas zonas tienen el mismo valor que en otras partes del mundo y acusan una disminución de más o menos 30% cuando se trata de la comparación de estaciones situadas en altilapiques o en valles de altas montañas. Cuadro I (b). La coincidencia de los valores del Cuadro I (e) con los datos obtenidos en climas completamente distintos, es sorprendente. Por ejemplo, se calcula un gradiente de 0,67 para la zona del Ben Nevis (Escocia, 57º N), que es uno de los lugares más moldosos del mundo, y de 0,64 para Ceilán (7º N) en la zona occidental.

Gradientes similares a los que venimos en el Cuadro I (b) se midieron también en los Alpes entre valles de distintas alturas (en promedio 0,46) y entre llanura y meseta en Rusia (0,45). El gradiente sumamente bajo entre Santa María y Tucumán se produce por la temperatura muy alta en el verano de Santa María, provocada por su situación geográfica (acelerada por altas montañas y abierta sólo hacia el norte). Esta disminución de gradiente térmico se manifiesta también por el nivel elevado que tienen las isotermas sobre macizos extendidos.

3. — En el invierno todos los gradientes muestran la disminución típica del clima continental según lo expresa el Cuadro II.

Cuadro I. — Gradiente vertical de la temperatura, en enero, entre estaciones

<table>
<thead>
<tr>
<th>Estación</th>
<th>Alturas en m sobre el nivel del mar</th>
<th>Estación</th>
<th>Alturas en m sobre el nivel del mar</th>
<th>ΔT</th>
<th>°C/100 m</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jujuy</td>
<td>1270</td>
<td>Lledesana</td>
<td>460</td>
<td>812</td>
<td>0,65</td>
</tr>
<tr>
<td>Salta</td>
<td>1173</td>
<td>Grienes</td>
<td>664</td>
<td>517</td>
<td>0,64</td>
</tr>
<tr>
<td>V. Neuquén</td>
<td>1588</td>
<td>Tucumán</td>
<td>481</td>
<td>997</td>
<td>0,67</td>
</tr>
<tr>
<td>Aconcagua</td>
<td>1280</td>
<td>Córdoba</td>
<td>482</td>
<td>775</td>
<td>0,74</td>
</tr>
<tr>
<td>C. Redentor</td>
<td>3552</td>
<td>Villavicencio</td>
<td>1765</td>
<td>2049</td>
<td>0,82</td>
</tr>
<tr>
<td>Villavicencio</td>
<td>1785</td>
<td>Mendoza</td>
<td>572</td>
<td>956</td>
<td>0,65</td>
</tr>
<tr>
<td>C. Redentor</td>
<td>3552</td>
<td>Mendoza</td>
<td>627</td>
<td>3905</td>
<td>0,65</td>
</tr>
<tr>
<td>Gasto Redentor</td>
<td>3552</td>
<td>Los Andes</td>
<td>910</td>
<td>2016</td>
<td>0,69</td>
</tr>
</tbody>
</table>

4. — En invierno el valor del gradiente es más semejante a los del verano (Cristo Redentor - Villavicencio y Cristo Redentor - Los Andes).

Como en el verano el valor del gradiente depende en primer lugar de la geografía de la estación de altura, así determina el valor del gradiente inverso de las condiciones térmicas locales de la estación baja: en otras palabras, guarda relación con la intensidad de la inversión térmica de la temperatura en los lados oriental y occidental de la cordillera, en la latitud de Cristo Redentor (33ºS), tienen con el mismo valor (0,63 y 0,60 en enero y 0,58 y 0,51 en julio, respectivamente). En estos valores se encuentran, por supuesto, solamente sobre la región de la inversión, la cual en verano está situada como inversión dinámica en la costa pacífica (gradiente entre Quillota y Los Andes -0,53) y en el invierno, como inversión de radiación en el lado oriental de la cordillera (Mendoza - Villavicencio 0,1).
NOTAS Y COMENTARIOS

Acercase de recientes trabajos sobre la circulación general de la atmósfera y las variaciones del clima ...

Nuestro conocimiento del tema es mínimo, pero que día a día va aumentando con la experiencia y la observación de la naturaleza. El clima es un factor importante en el medio ambiente que influye en la vida de los seres humanos.

El clima es un fenómeno complejo que está influenciado por una serie de factores, como la ubicación geográfica, la topografía, la presencia de agua y la actividad volcánica.

Los científicos han descubierto que hay patrones de clima que se repiten a lo largo del tiempo, como las El Niño y la oscilación de la circulación de la atmósfera. Estas son áreas de investigación actuales.

El clima también puede cambiar debido a cambios en la actividad del hombre, como la deforestación y el cambio en la agricultura.

En conclusión, el clima es un tema de gran importancia que requiere una atención continua para entender su complejidad y su impacto en la vida de los seres humanos.
Transcripción fragmentaria de actas del Primer Congreso de la OMM

En oportunidad, el titular del Secretariado de la Organización Meteorológica Mundial, Dr. G. Swoboda, distribuyó a los organismos miembros la recopilación de actas del Primer Congreso de la OMM celebrado en París entre el 19 de marzo y el 28 de abril de 1951. De las 48 resoluciones adoptadas por la asamblea, cuya colección constituye un voluminosa acervo documental, creemos de interés general para las actividades locales dar noticia acerca de las que subvenciones. Por razones de espacio, y en virtud de ser parte dispositiva de las resoluciones suficientemente claras, no se transcribe la parte exppositiva, la cual podrá fácilmente consultarse en inglés o francés en la fuente original.

Política general de la Organización Meteorológica Mundial

RESOLUCIÓN DEL CONGRESO, 9 (1): Reafirmada en el plano de la política general de la OMM los puntos expuestos en los párrafos que siguientes:

a) Relaciones con los países miembros: La Organización invita a los países no miembros de la Organización y que poseen Servicios Meteorológicos a enviar observadores a las reuniones del Congreso y de las Conferencias Regionales interesadas. Los Directores de los Servicios Meteorológicos de estos países no miembros podrán también hacerse representar en las reuniones de los Comités Técnicos.

b) Relaciones con las Instituciones especializadas de la Organización de las Naciones Unidas: se establecerá la comunicación estrecha entre la OMM e las otras Instituciones especializadas, de conformidad con el Art. 26 de la Convención (v. la Resolución 25 (1) del Congreso).

c) Otras Organizaciones internacionales: se coadyuvan convenios y acuerdos con otras Organizaciones internacionales (interamericanas o unidas) cuando ello constituya un interés para la OMM (v. la Resolución 25 (1) del Congreso).

Reglamentos técnicos (v. la Resolución 12 (1) del Congreso),

1) Radio: La Organización adoptará los márgenes adecuados para la radiomundial de estaciones meteorológicas respondiendo a su necesidad. En el caso de una escasez grave, exigirá que las emisoras que deseen transmitir su programación, informen de los mismos medios de seguridad, se mantém el uso colectivo, que son por fin, responsables de programaciones internacionales, se mantengan en uso colectivo con uno o más países.

2) Telefonometría: La Organización adoptará las medidas correspondientes para que las telefonicaciones en el campo de actividades de dicha Unión.

3) Información: La Organización mantendrá la información de los miembros, las Organizaciones interamericanas y los países no miembros acerca de la actividad internacional en el dominio de la Meteorología y sólo por los medios adecuados: boletines periódicos, prensa, radio, etc. (v. la Resolución 27 (1) del Congreso).

4) Publicaciones: La Organización pondrá a disposición de los miembros, las Organizaciones interamericanas y los países no miembros acerca de la actividad internacional en el dominio de la meteorología y sólo por los medios adecuados: boletines periódicos, prensa, radio, etc. (v. la Resolución 27 (1) del Congreso).

5) Relaciones con otras organizaciones internacionales: se establecerán acuerdos con otras organizaciones internacionales (interamericanas o unidas) cuando ello constituya un interés para la OMM (v. la Resolución 25 (1) del Congreso).

6) Reglamento de la OMM: La Organización adoptará y publicará los reglamentos internacionales a ser aplicadas por los Servicios Meteorológicos bajo la forma de didáctico estudio y solicitar en observaciones y sus sugerencias.

7) Petición: Se recomienda a la comunidad científica y técnica para que publique sus observaciones y sus sugerencias.

8) Declaraciones de los delegados: No se deben hacer cambios en la materia acordada en el Congreso.

Considerando que la Organización de las Naciones Unidas para la Educación, la Ciencia y la Cultura:

1) Estableció el servicio de laboratorios e institutos internacionales de investigación alongado en el Instituto Meteorológico Mundial.

2) Que debe, en el futuro próximo, consultar a la OMM y a otras organizaciones acerca de la creación de dichos Institutos.

Decide que la OMM participe en los metodos de impulso a oportuna y objetivamente la creación de la Unión Mundial para la Educación, la Ciencia y la Cultura, acerca de la importancia del Consejo Económico y Social de las Naciones Unidas, para considerar el informe que presente la creación de un Instituto Meteorológico Internacional.

Relaciones entre la OMM y la OACI

RESOLUCIÓN DEL CONGRESO, 20 (1): Ofrece su complacencia con la importancia vital de los servicios meteorológicos para la aviación y su deseo de colaborar con la Organización de Aviación Civil Internacional para asegurar estos servicios.

1) La OMM y la OACI: La OACI ha designado representantes encargados de estudiar con representantes de la OMM, los métodos a seguir para asegurar un servicio eficiente entre ambas Organizaciones, en el campo de la meteorología mundial y de la aviación civil internacional.

2) La OMM: El Secretario General transmite esta invitación al Secretario General de la OACI.

La Resolución termina con el siguiente complemiento del Congreso:

La Organización acuerda que el Consejo de la OMM debe considerar que los servicios meteorológicos no sirven únicamente a la aviación civil, sino también a la agricultura y al comercio, y que muchas otras actividades industriales y comerciales dependen de la información meteorológica.
Meteoro [Año 1]

(1) Que el Secretario público periódicamente envíe a la Organización Meteorológica Mundial un Boletín de la Organización Meteorológica Mundial.

(2) Que este Boletín comprenda:

a) Avances o informes sintetizados de las naciones de la Organización.

b) Informaciones sobre las actividades, proyectos, recomendaciones y decisiones, del Presidente, el Comité Ejecutivo y las Comisiones Técnicas, las Asociaciones Regionales, y el Secretario General.

c) Informaciones sobre relaciones con otras organizaciones internacionales.

d) Avances de progresos de publicaciones editadas por la OMM y de las modificaciones introducidas en dichas publicaciones.

(3) Que el Boletín se redacte en el lenguaje de trabajo de la Organización.

ACTUALIDADES

Conferencia Mixta de Navegación Aérea de las Regiones Sudamericana y Atlántico Sur. — Plano global que muestra esta conferencia en su reunión en Buenos Aires, Argentina, desarrollada en la ciudad de Buenos Aires entre el 26 de octubre y el 15 de noviembre, con la concurrida presencia de miembros delegaciones de los países participantes. Los informes fueron presentados por la delegación argentina y la delegación francesa, coordinada por el fresco con el delegado francés, que en la sesión final del acto, se presentó la resolución final de la conferencia, y la delegación francesa, que en la sesión final del acto, se presentó la resolución final de la conferencia.

El Comité de Meteorología se reunirá en Montevideo, Uruguay, el 26 de noviembre, para discutir los temas pendientes.

Publicación de datos meteorológicos mensuales

Resolución del Congreso, I (1): Reúne al Comité Ejecutivo a verter a secretar la cuestión de la publicación de estadísticas climatológicas mensuales, que se publicarán en el lenguaje de trabajo de la Organización con fines de estudio e información.

Autoriza al Comité Ejecutivo a tomar, dentro de los límites del presupuesto general de la Organización, las disposiciones financieras que permitan emprender el trabajo necesario para los informes de la Comisión y para la publicación.

Publicación de un Boletín de la Organización Meteorológica Mundial

Resolución del Congreso, I (2): Decide:

a) Publicar el Boletín periódicamente.

b) Designar al Secretario General como director del Boletín.

c) Designar al Presidente como editor del Boletín.

Publicación del Boletín en el lenguaje de trabajo de la Organización.

Actualización de la información proporcionada a la Organización.

Conferencia Mixta de Navegación Aérea de las Regiones Sudamericana y Atlántico Sur. — Plano global que muestra esta conferencia en su reunión en Buenos Aires, Argentina, desarrollada en la ciudad de Buenos Aires entre el 26 de octubre y el 15 de noviembre, con la concurrida presencia de miembros delegaciones de los países participantes. Los informes fueron presentados por la delegación argentina y la delegación francesa, coordinada por el fresco con el delegado francés, que en la sesión final del acto, se presentó la resolución final de la conferencia, y la delegación francesa, que en la sesión final del acto, se presentó la resolución final de la conferencia.

El Comité de Meteorología se reunirá en Montevideo, Uruguay, el 26 de noviembre, para discutir los temas pendientes.
Nuevas autoridades de la IAMTE.

Presentan un informe sobre las instalaciones del Observatorio Geofísico de Pilar (Córdoba).

La zona central de la provincia de Córdoba que la parte de la provincia de Santa Fe durante la noche del 21 al 22 de noviembre, sufrió las consecuencias de un tornado que alcanzó mayores violencias en la zona de Pilar (Córdoba). Sobre el Litoral y la zona central del país, existía un ejército de aire tropical descrito desde el norte y norponiente, que las capas inferiores de la atmósfera, y al mismo tiempo, aparece de aire frío en la altura. La creciente inestabilidad se manifestó ya durante la mañana del día 21, cuando faltos y tormentas, empezaron en el extremo sudeste del Litoral y se intensificaron con el avance de un frente frío desde el suroeste durante la noche del 21. Fueron, en consecuencia, una línea de tormentas del frente del roce frío y con el paso de dicha línea de inestabilidad se produjo el tornado de Pilar. Se estima que el tornado superó por inestabilidad de 200 km por hora.

El autor menciona que las instalaciones de este prestigioso Observatorio, desde hace más de medio siglo, verían efectuándose observaciones geofísicas de interés nacional y mundial, y se indican como instrumentos. Asumiendo que se realizarán tanto se precisarán en esos problemas y medios, la teoría de los fenómenos geomagnéticos y de sobre todo sobre la teoría de los fenómenos luminosos. Siguiendo hasta con la formación de una teoría geofísica como intermedio entre la hidrodinámica clásica y la Magnetismo de los fluidos turbulentos.

El segundo capítulo se conmina a los problemas de incidencia de la radiación solar, luz y oscilaciones de la atmósfera. La teoría de la Onde se refiere a la aplicación de la teoría de las funciones atómicas. La teoría de la Onde presenta el problema de la turbulencia, conduciendo a una teoría completa desde el principio con x, y de la que se expone como muy interesante. Luego sigue una sección sobre los problemas de la radiación solar, que se hace más urgente y la ayuda que se puede siempre estar en las teorías modernas del cálculo de probabilidades que se exponen en la parte final. — E. C. B.

RESENAS BIBLIOGRÁFICAS

LIBROS Y FASCÍCULOS

Este libro tiene por objeto examinar el papel que juega el cálculo de probabilidades en la teoría de la turbulencia de los fluidos. El autor inicia su libro repasando en la «Introducción» las ideas y cuestiones fundamentales que se interrelacionan con la turbulencia y sus relaciones con la ley de probabilidad por una parte, y los fenómenos por otra, haciendo notar que una ley de probabilidad puede tener un interés físico sin que existan todos los momentos. Los plazos y momentos se presentan progresivamente en el dominio de la teoría de las funciones algebraicas. La segunda parte se dedica a la teoría estadística de la turbulencia. Contiene otros capítulos con diferentes aspectos de la turbulencia que se estudian en detalle, tales como la turbulencia en el campo magnético, la turbulencia en el campo terrestre, etc.

El autor se propone una fórmula que expone la ionización y la turbulencia, y la sección final se centra en la turbulencia en el campo magnético, la turbulencia en el campo terrestre, etc. — E. C. B.
el concepto de amortiguación a distintos elementos de diferentes métodos meteorológicos y explica por última vez la técnica de la pro-
visión de distintos métodos de los valores más habituales. No obstante, seguirá siendo útil en el futuro, ya que no.

Sigue luego un ensayo de W. Spenhose y Frank Corip, que examinan los aspectos de la relación entre el envejecimiento de las mesas de aire con el reflejo del viento en una zona determinada. El autor no permitió tener en cuenta la variación temporal de los campos de movimiento durante el desarrollo del presente, el pro-
blema de los problemas principales en la presentación de la variación del tiempo serán mencionados. Pero se interesaron en que el procedimiento mete-
orológico conduzca a un valor límite del plano del pronóstico, pasado el cual la aproximación con ello el producto (mismo) pierde su sentido. Bajo condiciones no extraordinarias el orden de magnitud tendencia de la tierra será de 12 licados al oeste.

W. S.

El sísmologo está dedicado a la medición del sísmologo Angelio Jace, Jace. Las lecturas de los estudios del propio Jace, Jace, refierense a la sección sísmica de Tenerife. En la noche de 15/4/47, en la que se refieren a los valores de la estación en la isla de Tenerife. La menciónada explosión ha sido objeto, por otra parte, de puntuales estudios y dis-
cusiones en las bibliotecas geográficas por las conclusiones que publican son acuerdos referen-
tes a la estructura del terreno terrestre. La nota siguiente del mismo autor trata en forma de un breve apunte del problema de los microdolos. Sigue un ensayo detallado de H. Schmeiser sobre determinación de animales con métodos sísmicos geodésicos, para fines de ingeniería. El artículo siguiente de W. Schlap, contiene sugerencias y recomendaciones para construcciones sísmicas. El autor basa sus ideas en las experiencias recogidas en los años anteriores de la construcción del hotel en Tenerife en el año 1939. Se dan dibujos y fotografías detalladas de estructuras en edificios y de elementos destructivos. El último trabajo de Ria Barton, trata de los problemas de la dirección del desplazamiento de las temperaturas de la atmósfera. Se dice que la temperatura es un índice de la turbulencia. — O. S.

REVISTAS

A. F. Spillman, "Progress in Meteorological Instrumentation 1920-1950 - 520".

Trata del desarrollo de la técnica de observación y del instrumental meteorológico que se utilizan para el desarrollo de la calibración de instrumentos. El autor hace una recapitulación de los artículos, para tal estudio. Un síntetico dispositivo de observatorio con transmisión óptica, como también un registrado con movimiento en la tierra y regulación por pí-

dulo interestical. Referente a este último, se sacan conclusiones de los hallazgos de las ajen-

tes de la longitud del día, necesarios para lograr determinados cambios de veloc-

idad en el tambor. El síntetico en la dirección y velocidad del viento y la extra-

facción de las temperaturas. Se trata de la presencia de humo que existe en una ciudad industrial y más aún cuando seca seca en períodos de tiempo. Se muestran algunas de las conclusiones de los investiga-
gadores que han hecho una correlación entre los datos de los registros de la atmósfera de las ciudades de Davison y la ciudad de New York, durante el periodo de 1909-1910. La mejora de estas conclusiones resultó cuando se descubrió que la forma de la curva de la farsa de los registros de Davison y la conclusión de que la corriente solaride, como se muestra,

tras las curvas de las ciudades, parece ser un factor importante en el problema de la propagación del humo. — N. Z. G.

Annalen der Meteorologie. Año III, cuen-
drano 11/12, 1950.

P. Blunting, "La influencia del viento en la temperatura del agua océano". 551, 526-6.

Después de eliminando los efectos imme-

diados de la radiación, el autor se ocupa de la relación entre el viento y la diferencia
temperatura del aire superiores y inferiores en el agua océano. Se dice que el viento, disminuye esta diferencia, y también la atmósfera en comparación con el viento en el viento. La temperatura mencionada. Los dos efectos se originan en la turbulencia. — N. Z. G.

H. Mulle-Arn, "Propagación de la presión a la dirección del desplaza-

miento de las desviaciones húmedas. (Parte I: Las medidas y la velocidad de las desviaciones)

El autor distingue dos tipos de desviaciones, las que se derivan de la direc-

tión de las corrientes en la atmósfera en sentido ciclónico (hacia la derecha en el hemisférico occidental) y las que se derivan en sentido opuesto. Muy poco sigue, dice, la dirección de las corrientes en la atmósfera un mayor descenso. Se describen las características que permiten reconocer el tipo de desviación con la anticipación necesaria para la pre-

visión. Las desviaciones que se derivan en sentido anticyclónico y se disipan a poco veloci,

dad, una vez que se hayan formado en el aire relativamente frío en las capas bajas y medias y que, por consiguiente, tienen gran importancia. — N. Z. G.

F. Bauer, "Hechos en cuanto a la evolución de los invernaderos en Europa Cen-

tral - 551, 561-3, 515-2.

Se trata de la variación anual de la población de roedores en periods de bajas temperaturas. Se trata de un estudio para explicar las variaciones de la dirección y la velocida-

de como consecuencia de las variaciones de la circunferencia. — W. S.

Geophysical Magazine, Vol. 31, No. 2. Tokyo:

Takashi Sekiguchi, "Climatology and the Problem of the Page 11, 591-596.

Recopilación bibliográfica

353

En este artículo se invierte el parente-

taje del número de días con la brecha que contribuyen a cada parte de la brecha. Se obtiene un promedio de 56 y 75 por ciento, teniendo en cuenta el promedio de los datos de humo de Davison de la ciudad de New York, durante el periodo de 1909-1910. La mejora de estas conclusiones resultó cuando se descubrió que la forma de la curva de la farsa de los registros de Davison y la conclusión de que la corriente solaride, como se muestra,

tras las curvas de las ciudades, parece ser un factor importante en el problema de la propagación del humo. — N. Z. G.
En un estudio anterior, el autor, miembro del Meteorological Research Institute, se ocupó de la aplicación de distintas técnicas en la predicción del clima en el Japón (T. Suichite, 1949). - «On the Water Balance Problem associated with the Representation of Climatic Geophysical Patterns (20).» 87-95, con el propósito de tratar de definir claramente la relación de los parámetros de árboles y de humedad de su país. En este trabajo se define los diversos métodos y procedimientos científicos propuestos hasta la fecha en cuanto a la estimación de la evaporación, dada la dificultad de su observación directa, agrupados en la siguiente forma.

2) Deficit de saturación: Mayer (1926).

3) Temperaturas del aire: Lang (1920), Koppen (1914-1931), De Martonne (1926), Thorntwaite (1931) y Angstrom (1950).

4) Tensión de vapor, temperatura del aire y presión atmosférica: Smykiewicz (1930).

Recorre, en este primer trabajo, la dificultad que presenta el tratar de determinar el límite de tal o cual índice a tipo de suelo, vegetación natural, etc., y estima su valor como punto fundamental en climatología sin poder decir algunos como más adecuado para los fines generales. En el segundo trabajo, mete de este autoanálisis, el autor aplica para el Japón el nuevo concepto del balance hídrico propuesto por Thorntwaite (1920), basado en el cálculo de la evaporación transpiración en tóner, cuyas conclusiones son las que dan cuenta a continuación en traducción libre:

¿Aplicando la idea de la evaporoparapresión y suspensión potencial sugerida por el Dr. Thorntwaite hemos dibujado el balance hídrico de los países y el grado de sufrimiento y de humedal del clima de varios lugares del Japón. Según este método, se puede decir que el grado de seca o de humedad climático se determina claramente expresado en una forma característica. Por ejemplo, la temperatura humedad del área del Mar del Sur y de la región costera del Mar del Japón y la costa más ancho entre ambos se destaca claramente. La distribución de la precipitación del NW argentino, que es resultado de la interacción de la variación interanual de la temperatura y la humedad; el centro de la zona de baja presión, conocida por las áreas redondeadas, puede determinar un valor negativo que es consecuencia de esta correlación, resultando para un intercambio de 6 meses: $v = 0.8$. La altura del nivel de "empieza" es a 2,000 metros sobre el nivel del mar; por encima comienza el anticiclón terráqueo desarrollándose en forma relativamente más rápida. El cambio de las masas de seis participantes durante 6 días 4 de los cuales son de calefactor en un valor de $\frac{2^a}{2}$ por día en las capas de la tropóscopa inferior. (Este trabajo apareció también en Meteorological Reviews, Mars (1951).) - R. M. Q.

La Revue Scientifique (Julio-septiembre 1930)

En el curso de la campaña, 1949-1950 del "Commandant Cheruit" los anagramas geoelectricos se registraron durante la mayor parte del viaje a todas las horas. Las medidas se hicieron con la ayuda de un anagrama tipo KRODE 22 del Servicio de Prevención Inundaciones Militar. Entre el 20 de diciembre de 1949 y el 20 de febrero de 1950, se obtuvo una serie muy interesante de un millar de registros. Publicando todos los anagramas ejecutados más alta del paralelo 60º Sud, se quedarán en registros anormales. El objeto de este artículo es presentar una clasificación de las numerosas anomalías encontradas y de hacer algunas hipótesis sobre su origen. Puede considerarse que dichas anomalías son:

c) Las curvas en forma de "coche".

d) Las regiones producen un "trazo" entre las trayectorias de las capas E y F.

e) Las curvas llevan la elevación de la temperatura más allá de las frecuencias críticas.

f) Las capas E, dando esos a frecuencias elevadas.

g) Las capas E, desviándolas o estardificando.

h) Las capas E, elevándose en altura con la frecuencia.

i) Las capas E, dándole una traza horizontal o el anagrama de la capa E, pero a altura normal (10 kilómetros) o más.

j) En una última categoría se consideran los anagramas anormales que no se producen creciendo en las capas procedentes. — W. S.

Describen las condiciones y del diario en el cuadro, que con el tiempo del día, se produce un cambio en la etapa de la temporada y el ambiente. (Por contraste, mencionan los migradores que llegaron ya más entrada la primavera, llamados «migrantes del calendario») a pesar de ser, años más tarde, en el mismo lugar o en sus respectores. — C. W. Thornthwaite — Agricultural climatology at Seacliff farms (S. 586-565). Descubre aspectos de Meteorologia práctica aplicados a la agricultura en las guías de Seacliff, según los resultados obtenidos en el fuerte experimental anual al laboratorio para el estudio del desarrollo del clima sobre crecimiento y desarrollo de diferentes hortalizas. Se determinan técnicas de crecimiento para varios cultivos, a la luz de controlar la temperatura y el humedal. De estos índices se llega a la planificación del clima sobre crecimiento, sin embargo, a la de determinar para los volúmenes de evaporación transpiración, se debe la relación del índice de vegetación, inferior, inferior a la de los cambios climáticos, como reducción solar, temperatura, y humedal según el ángulo del sol. Con ello se puede describir más exactamente el tallo. De los resultados sobre cultivos con agua de riego, según una forma derivada de las observaciones evapotranspiraciones, y descubre el método para medir la evaporación, la transpiración y el volúmenes de las fuentes de vapor-transfusión. Este método sugiere mediciones físicas muy exactas, de ventura, temperatura atmosférica e humedal, en que está trabajando «The Hopkins Laboratory of Climatology». Para conocer la capacidad de retención hídrica del suelo e infiltración, se han efectuado experimentos de riego en el campo y de culebra y de Seacliff Farms, con esas criaturas que simulan el comportamiento de la capa más superficial, comparando los resultados de investigaciones en el U. S. Geological Survey. — M. C.
Índice del Tomo I

Artículos

<table>
<thead>
<tr>
<th>Título</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>BERNABÉU, DOMÍNGO. — La temperatura biológica eóptima</td>
<td>92</td>
</tr>
<tr>
<td>BERTOLO, JUAN JACINTO; ALBERTO CACELO Y MIGUEL C. SANTOS —</td>
<td></td>
</tr>
<tr>
<td>Exploración meteorológica en la isla Temblador-Grazante</td>
<td>314</td>
</tr>
<tr>
<td>BERTOLO, JUAN JACINTO y ARTURO L. VIDAL. — Los díaz de la República</td>
<td></td>
</tr>
<tr>
<td>Argentina según una nueva clasificación de Thornthwaite</td>
<td>3</td>
</tr>
<tr>
<td>CACELO, ALBERTO. — Estudio meteorológico de pendientes en el suroeste</td>
<td></td>
</tr>
<tr>
<td>de la provincia de Buenos Aires</td>
<td>134</td>
</tr>
<tr>
<td>— Ver Buenos Aires</td>
<td>134</td>
</tr>
<tr>
<td>CELESTE, RAÚL. — Reconocimiento geotécnico en las inmediaciones de</td>
<td></td>
</tr>
<tr>
<td>Salto Grande (Ente Ríos)</td>
<td>183</td>
</tr>
<tr>
<td>CELORIO, BERNARDO S. — Publicación del director de la mapa forestal ob-</td>
<td></td>
</tr>
<tr>
<td>servado en la zona de Río Seco</td>
<td>206</td>
</tr>
<tr>
<td>DEGREBBY, G. — Sobre la presión barométrica del tiempo</td>
<td>291</td>
</tr>
<tr>
<td>DEGREBBY, G.; R. DI MIRY Y O. LUTZEN-HELM. — Ensayos de una</td>
<td></td>
</tr>
<tr>
<td>nitrógeno acústico</td>
<td>55</td>
</tr>
<tr>
<td>DE MIRY, R. — Ver Di Miri y O. Lutzon-Helm</td>
<td>55</td>
</tr>
<tr>
<td>FIGUEROA, SERGIO. — Influencia de la temperatura ambiente sobre el per-</td>
<td></td>
</tr>
<tr>
<td>centaje de granos bituminosanos en la seca de vaca</td>
<td>189</td>
</tr>
<tr>
<td>GHODES, ROBERTO P. A. — Obras de reducción de observaciones de</td>
<td></td>
</tr>
<tr>
<td>campañas magnéticas</td>
<td>198</td>
</tr>
<tr>
<td>GHODES, ROBERTO P. A. — La formación del dunarazo y su relación con la</td>
<td></td>
</tr>
<tr>
<td>vegetación de infield y de primavera</td>
<td>75</td>
</tr>
<tr>
<td>LUTZEN-HELM, O. — Ver Di Miri y O. Lutzon-Helm</td>
<td>55</td>
</tr>
<tr>
<td>MARCHETTI, ADOLFO A. — Obra de escrita del centro de la cantidad de plát-</td>
<td></td>
</tr>
<tr>
<td>eros en la República Argentina</td>
<td>46</td>
</tr>
<tr>
<td>PERONAS, FEDERICO J. — Roca climatológica de los vientos fuertes de</td>
<td></td>
</tr>
<tr>
<td>Buenos Aires</td>
<td>160</td>
</tr>
<tr>
<td>QUINTERO, ROBERTO M. — Sobre la utilización de diagramas estacionales en</td>
<td></td>
</tr>
<tr>
<td>meteorología</td>
<td>277</td>
</tr>
<tr>
<td>RAJOPO, JOSÉ MARÍA. — Presidente de las creaciones del Río Paraná</td>
<td>91</td>
</tr>
<tr>
<td>SALAZAR, MARÍA ELENA. — Ver Schneider, Ota</td>
<td>125</td>
</tr>
<tr>
<td>SANTOS, ENRIQUE LUIS. — Tabla para el cálculo del peso de hoja</td>
<td>150</td>
</tr>
<tr>
<td>SANTOS, MIGUEL C. — Ver Buenos Aires, Juan Jacinto</td>
<td>314</td>
</tr>
<tr>
<td>SCHINDLER, OTO y MARÍA ELENA SALAZAR. — Efecto de la creación de la</td>
<td></td>
</tr>
<tr>
<td>vegetación sobre el peso de la hoja</td>
<td>123</td>
</tr>
<tr>
<td>SCHRÖDER, WERNER. — Basado en el procedimiento a medio plazo de</td>
<td></td>
</tr>
<tr>
<td>las condiciones de temperatura en el océano de Buenos Aires</td>
<td>33</td>
</tr>
<tr>
<td>— Composición global de la precipitación anual con relación con la</td>
<td></td>
</tr>
<tr>
<td>producción de agua de Buenos Aires</td>
<td>189</td>
</tr>
<tr>
<td>VIDAL, ARTURO L. — Ver Buenos Aires, Juan Jacinto</td>
<td>73</td>
</tr>
<tr>
<td>WEGENER, KURT. — Verificación experimental de la constante solar</td>
<td>171</td>
</tr>
<tr>
<td>— Análisis de la variación de la pendiente en la República Argentina</td>
<td>305</td>
</tr>
</tbody>
</table>

Artículos breves

<table>
<thead>
<tr>
<th>Título</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>CELESTE, RAÚL. — Apuntal físico del costero de la Provincia de La</td>
<td>107</td>
</tr>
<tr>
<td>Ríos</td>
<td></td>
</tr>
<tr>
<td>COLLETAS, BRUNO. — Frecuencia de días de visibilidad horizontal en</td>
<td>108</td>
</tr>
<tr>
<td>10 kilómetros o más en el Observatorio de las Islas Océanos, 1932</td>
<td></td>
</tr>
</tbody>
</table>
SE TERMINÓ DE IMPRIMIR EL DÍA
29 DE NOVIEMBRE DE MIL NOVE-
CENTOS CINCUENTA Y UNO, EN
LOS TALLERES GRÁFICOS PALUMBO,
LA MADRID 311-315, BUENOS AIRES.
REPUBLICA ARGENTINA